Chapter 8
USB and IEEE-1394
Ports and Devices

Universal Serial Bus
The Universal Serial Bus (USB) port is a dual-speed connection running at 1.5Mbps or 12Mbps, which enables up to 127 devices of many different types to be connected to a single port. The USB port is well on its way to replacing the traditional serial, parallel, and PS/2 ports on new and forthcoming systems, and it is already being used for a wide variety of devices. Use this section to help you detect and configure USB ports effectively.

USB Port Identification
Figures 8.1 and 8.2 help you identify USB devices and ports.

![USB Icon](image)

Figure 8.1 This icon is used to identify USB cables, connectors, and peripherals.

Pinout for the USB Connector
Table 8.1 shows the pinout for the USB connector.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Color</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>Red</td>
<td>Cable power</td>
</tr>
<tr>
<td>2</td>
<td>- Data</td>
<td>White</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>+ Data</td>
<td>Green</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
<td>Black</td>
<td>Cable ground</td>
</tr>
</tbody>
</table>
Typical USB Port Locations

The location of USB ports varies with the system. On late-model desktop and tower computers using baby-AT motherboards, you might find one or two USB ports on a card bracket in the rear of the computer. The ports might be mounted on an add-on card or cabled out from motherboard ports.

Most systems using ATX, NTX, or similar motherboards—as well as late-model LPX-based systems—will have one or two USB ports on the rear of the case next to other ports.

Some consumer-oriented, late-model systems have one USB port on the front, sometimes located next to a 9-pin serial port. These ports are located in the front of the computer for easier connection of digital cameras and card readers for digital image downloading.

Adding USB Ports to Your Computer

If your computer doesn’t have USB ports onboard, use one of the following options to add them:

- Purchase USB header cables to extend motherboard USB cable connectors to the outside of the case.
- Purchase and install a USB host adapter card.
Even if your baby-AT system has connectors for USB header cables, changes in the USB spec make installing an up-to-date USB host adapter card a better idea for many users.

Prerequisites for Using USB Ports and Peripherals

Before you buy or try to install a USB peripheral, make sure your system meets the requirements shown in Table 8.2. Some adjustments or updates to the system configuration might be necessary.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Reason</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows 98</td>
<td>Built-in support for USB peripherals</td>
<td>Windows 95B OSR 2.1 and above have USB support, but many peripherals require Win98 or above.</td>
</tr>
<tr>
<td>Windows 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows Millennium Edition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working USB ports</td>
<td>Many systems shipped with disabled USB ports</td>
<td>Check BIOS and enable there if necessary; some systems might require header cables to bring the USB connector to the rear of the system.</td>
</tr>
</tbody>
</table>

You can download the free USB Ready utility program at www.usb.org/data/usbready.exe to check your system’s USB readiness at both hardware and software levels.

Verify that the peripheral you are installing is designed for your operating system. Although USB ports themselves are found on both PC and Macintosh systems, some USB devices are for use only on PCs or Macintoshes, not both types of systems.

Troubleshooting USB Ports

USB ports built into the computer (also called *root hubs*) are becoming the primary external device connection for an increasing number of PCs. While USB devices are plug and play, requiring (and allowing!) no configuration, persistent problems with USB devices are common for many users. Use the following tips to help you achieve reliable USB operation:

- Check Prerequisites from Table 8.2.
- If devices don’t work when plugged into an external hub, plug them into the root hub (USB connector on the system); if they work when attached to the root hub, upgrade the external hub’s firmware, attach a power supply to it, or replace it.
- If a new device isn’t detected, remove other USB devices, plug in the new device first, and then reattach the other USB devices.
• Check the power usage for the USB bus in the Power dialog box of the operating system.

• Verify that the USB device is drawing no less than 50mA and no more than 500mA.

• Use the Windows Device Manager to verify proper operation of the USB port; adjust IRQ settings if necessary to avoid conflicts with other devices.

• Install the latest USB device drivers for the device and the operating system; USB devices that work in Windows 98 might not be supported by other versions of Windows.

• If a printer doesn’t work properly with the “correct” USB driver, try using a compatible driver for an older model as a workaround.

• Install the latest firmware for the USB device; bad firmware creates “ghost” versions of devices in the Device Manager when the device is unplugged and reattached.

• Verify that the USB root hub (port) is assigned an IRQ; normally IRQ 9 is used if available. Make sure IRQ steering is working if all available IRQs are already assigned to other ports.

• Use high-speed (heavily shielded) cabling for high-speed devices, such as printers, scanners, and network connections.

• Separate low-speed from high-speed devices by attaching them to separate USB ports.

• Assign USB controllers to Controller ID 1 if not detected by the game.

• Use the smallest number of hubs possible; some versions of Windows can’t use over 5 USB hubs (some devices double as hubs).

• Before you purchase a USB device, verify device driver support for your operating system; Windows 2000 supports USB devices, but many vendors are slow about supplying USB drivers for Windows 2000.

• When possible, buy devices that can be connected by either a USB port or a so-called “legacy” port (PS/2 keyboard/mouse port, serial port, parallel port, or SCSI port) to enable you to use the device even if you have problems with your USB ports or peripherals.
Using USB Hubs with Legacy (Serial, Parallel, and PS/2) Ports

A number of products on the market enable you to connect various legacy products to USB ports. The most economical way to connect serial, parallel, or PS/2-port products is through the use of a multi-purpose hub that also features multiple USB ports.

You can also purchase serial-to-USB or parallel-to-USB converter cables, but these are less flexible and more expensive if you need to connect multiple legacy devices to a system.

Check the list of supported legacy devices before you buy a converter cable or multi-purpose port. USB hubs with PS/2 and serial ports normally support legacy devices such as modems, keyboards, and mice; USB hubs with parallel ports normally support printers. If you use other types of parallel devices, such as drives or scanners, you will need an actual parallel port to connect them. However, because daisy-chaining multiple parallel devices can be difficult, moving the printer to a multi-purpose USB hub can free up the LPT port for use by these other devices.

Online Sources for Additional USB Support

- Linux USB Device Support and Status
 http://www.qbik.ch/usb/devices/
- USB News and Troubleshooting Sites
 http://www.usbman.com/
 http://www.usbworkshop.com/
 http://www.usb.org

USB 2.0

USB 2.0 is a backward-compatible extension of the USB 1.1 specification that uses the same cables, connectors, and software interfaces, but which runs 40 times faster than the original 1.0 and 1.1 versions.

All existing USB 1.1 devices will work in a USB 2.0 bus because USB 2.0 supports all the slower-speed connections. USB data rates are shown in Table 8.3.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Megabits per Second</th>
<th>Megabytes per Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB 1.1 low-speed</td>
<td>1.5Mbit/sec</td>
<td>0.1875MByte/sec</td>
</tr>
<tr>
<td>USB 1.1 high-speed</td>
<td>12Mbit/sec</td>
<td>1.5MByte/sec</td>
</tr>
<tr>
<td>USB 2.0</td>
<td>480Mbit/sec</td>
<td>60MByte/sec</td>
</tr>
</tbody>
</table>
The support of higher-speed USB 2.0 peripherals requires using a USB 2.0 hub. You can still use older USB 1.1 hubs on a 2.0 bus, but any peripherals or additional hubs connected downstream from a 1.1 hub will operate at the slower 1.5MByte/sec USB 1.1 maximum speed. Devices connected to USB 2.0 hubs operate at the maximum speed of the device, up to the full USB 2.0 speed of 60MBytes/sec.

When communicating with an attached USB 2.0 peripheral, the 2.0 hub simply repeats the high-speed signals; however, when communicating with USB 1.1 peripherals, a USB 2.0 hub buffers and manages the transition from the high speed of the USB 2.0 host controller (in the PC) to the lower speed of a USB 1.1 device. This feature of USB 2.0 hubs means that USB 1.1 devices can operate along with USB 2.0 devices and not consume any additional bandwidth.

IEEE-1394
The so-called FireWire or iLINK interface pioneered by Apple is also available for Windows/Intel-type computers. Despite the fact that IEEE-1394 ports are seldom standard equipment at present, the performance features they offer suggest that they will become a part of the “twenty-first century PC” for many users.

Figure 8.3 shows you how to recognize an IEEE-1394 connector plug, cable, and socket.

![IEEE-1394 cable, socket, and connector plug](image)

Figure 8.3 IEEE-1394 cable, socket, and connector plug.

Adding IEEE-1394 Ports to Your Computer
While most recent systems have USB ports onboard, IEEE-1394 ports are rare among PCs, but are more common on Macintosh systems.

A wide variety of IEEE-1394 host adapters are available for purchase. Most host adapters provide one or more 6-pin IEEE-1394 ports, provide an adapter for 4-pin IEEE-1394 devices, and use a single 32-bit PCI slot. Adaptec’s AHA-8945 and HotConnect Ultra 8945 products combine Ultra SCSI and IEEE-1394 on a single 32-bit PCI slot.
IEEE-1394, like USB, also supports hubs for sharing a single port among multiple devices, although the hubs are different.

Resource Requirements for IEEE-1394 Host Adapters

Regardless of the number of IEEE-1394 ports, an IEEE-1394 host adapter card uses only one IRQ and one I/O port address. The IRQ used by the host adapter should not be shared with other devices. If necessary, take advantage of IRQ steering for PCI cards with Windows 98, 2000, and ME to have other PCI cards share an IRQ to free up an IRQ for the IEEE-1394 host adapter. If your host adapter also has a SCSI port onboard, the SCSI port will also require an IRQ and I/O port address.

The PCI slot you choose for the IEEE-1394 host adapter must support bus-mastering if the host adapter uses this feature. Consult your system or motherboard documentation and your host adapter documentation to see whether this is a requirement for you. You might need to move existing PCI cards around to satisfy this requirement.

Comparing USB and IEEE-1394

Because of the similarity in both the form and function of USB and 1394, some confusion has existed about the two. Table 8.3 summarizes the differences between the two technologies.

<table>
<thead>
<tr>
<th></th>
<th>IEEE-1394 (i.LINK) (FireWire)</th>
<th>USB 1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-Host Required</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum Number of Devices</td>
<td>63</td>
<td>127</td>
</tr>
<tr>
<td>Hot-Swappable</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum Cable Length Between Devices</td>
<td>4.5 meters</td>
<td>5 meters</td>
</tr>
<tr>
<td>Current Transfer Rate</td>
<td>200Mbps (25MB/sec)</td>
<td>12Mbps (1.5MB/sec) or 1.5Mbps</td>
</tr>
<tr>
<td>Future Transfer Rates</td>
<td>400Mbps (50MB/sec)</td>
<td>480Mbps (USB 2.0)</td>
</tr>
<tr>
<td></td>
<td>800Mbps (100MB/sec)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1Gbps+ (125MB/sec+)</td>
<td></td>
</tr>
<tr>
<td>Typical Devices</td>
<td>DV Camcorders</td>
<td>Keyboards</td>
</tr>
<tr>
<td></td>
<td>High-Res. Digital Cameras</td>
<td>Mice</td>
</tr>
<tr>
<td></td>
<td>HDTV</td>
<td>Joysticks</td>
</tr>
<tr>
<td></td>
<td>Set-Top Boxes</td>
<td>Low-Resolution</td>
</tr>
<tr>
<td></td>
<td>High-Speed Drives</td>
<td>Digital Cameras</td>
</tr>
<tr>
<td></td>
<td>High-Res. Scanners</td>
<td>Low-Speed Drives</td>
</tr>
<tr>
<td></td>
<td>Printers</td>
<td>Modems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Printers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low-Res. Scanners</td>
</tr>
</tbody>
</table>
The main difference is speed. Currently, IEEE-1394 offers a data transfer rate that is more than 16 times faster than that of USB 1.1, but which is less than half as fast as USB 2.0. This speed differential might change in the future as higher speed versions of IEEE-1394 debut and faster versions of USB are introduced. In the future, PCs might frequently include both USB and IEEE-1394 interfaces. Together, these two buses can replace most of the standard connections found on the back of a typical PC.

USB 1.1 is clearly designed for low-speed peripherals, such as keyboards, mice, modems, and printers, whereas USB 2.0 can be used to connect most high-speed external devices. 1394 will be used to connect mostly high-performance digital video electronics products.

Another important benefit of 1394 is that a PC host connection is not required. Thus, 1394 can be used to directly connect a Digital Video (DV) camcorder and a DV-VCR for dubbing tapes or editing.

USB ports are standard on all recent desktop and notebook computers because Intel has added USB support to all its motherboard chipsets since 1996. However, IEEE-1394 ports must be added by means of an adapter card because the motherboard chipsets for PCs don’t support this interface.

Troubleshooting IEEE-1394 Host Adapters and Devices

- **Host adapter is installed but doesn’t work**—Make sure that your system has loaded the correct IEEE-1394 driver for the host adapter. Some host adapters don’t use the Windows-provided TI chipset driver.

- **Wrong driver is installed for host adapter**—If you have installed the wrong driver, remove the IEEE-1394 host adapter listing from the Windows Device Manager, have the driver CD or disk supplied with the host adapter handy, restart the system, and have the computer search for the best driver. It will find the driver on the disk or CD-ROM and install it.

- **Choppy video during digital editing**—Use UDMA Bus-mastering drivers with ATA/IDE hard disks to provide smooth flow of digital video; install and enable as necessary (see Chapter 4, “SCSI and IDE Hard Drives and Optical Drives,” for details).

- **4-wire devices aren’t recognized**—Whereas 6-wire devices get power from the IEEE-1394 bus, 4-wire devices require their own power supply; ensure that it’s connected and turned on.
• **Device “disappears” from Windows Device Manager after being connected**—The connected device is probably using power management; after the device’s power management is enabled, this is normal. Use the device’s power management controls to disable power management while the device is connected to the computer.

• **Device displays a yellow ! in Device Manager or isn’t displayed**—Windows 2000 provides support for only host adapters that support OpenHCI (OHCI). Adaptec and other brands that use non-OHCI drivers must install their own drivers to work. Update the drivers or remove the device and reinstall it, providing the correct drivers to correct the problem.

IEEE-1394 and Linux

Linux kernel versions 2.2 and 2.3 support IEEE-1394. To download the support files or for more information about supporting IEEE-1394 devices under Linux, go to the following address:

`linux1394.sourceforge.net/index.html`

Online Sources for Additional IEEE-1394 Support

- IEEE-1394 Products
 - www.firewire-1394.com/
 - www.askfor1394.com
- IEEE-1394 Trade Association
 - www.1394ta.org
Chapter 9

Keyboards, Mice, and Input Devices

Keyboard Designs
The primary keyboard types are as follows:

- 101-key Enhanced keyboard
- 104-key Windows keyboard
- 83-key PC and XT keyboard (obsolete)
- 84-key AT keyboard (obsolete)

Note
If you need information about the 83-key PC and XT keyboard or 84-key AT keyboard, see Chapter 7 of *Upgrading and Repairing PCs, 10th Anniversary Edition*—included in PDF format on the 12th Edition CD-ROM.

The 101-Key Enhanced Keyboard
This keyboard design serves as the basis for virtually all current-model keyboards.

101-Key Versus 102-Key Keyboards
Foreign language versions of the Enhanced keyboard include 102 keys and a slightly different layout from the 101-key U.S. versions.

The 104-Key Windows Keyboard
The Microsoft Windows keyboard specification outlines a set of new keys and key combinations. The familiar 101-key layout has now grown to 104 keys, with the addition of left and right Windows keys and an Application key. These keys are used for operating-system and application-level keyboard combinations, similar to today's Ctrl and Alt combinations. (Figure 9.2 shows the standard Windows keyboard layout, including the three new keys.)

Using Windows Keys
Table 9.1 shows a list of all the Windows 9x, Windows NT 4, and Windows 2000 key combinations that can be performed with the
104-key Windows keyboard. These keyboard shortcuts can be useful, especially if your mouse stops working or you want to work more quickly with the Windows desktop.

<table>
<thead>
<tr>
<th>Table 9.1 Windows Key Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Combination</td>
</tr>
<tr>
<td>WIN+R</td>
</tr>
<tr>
<td>WIN+M</td>
</tr>
<tr>
<td>Shift+WIN+M</td>
</tr>
<tr>
<td>WIN+F1</td>
</tr>
<tr>
<td>WIN+E</td>
</tr>
<tr>
<td>WIN+F</td>
</tr>
<tr>
<td>Ctrl+WIN+F</td>
</tr>
<tr>
<td>WIN+Tab</td>
</tr>
<tr>
<td>WIN+Break</td>
</tr>
<tr>
<td>Application key</td>
</tr>
</tbody>
</table>

When a 104-key Windows keyboard is used with Microsoft IntelliType Software installed, the additional key combinations shown in Table 9.2 can be used.

<table>
<thead>
<tr>
<th>Table 9.2 Additional Key Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Combination</td>
</tr>
<tr>
<td>WIN+L</td>
</tr>
<tr>
<td>WIN+P</td>
</tr>
<tr>
<td>WIN+C</td>
</tr>
<tr>
<td>WIN+V</td>
</tr>
<tr>
<td>WIN+K</td>
</tr>
<tr>
<td>WIN+I</td>
</tr>
<tr>
<td>WIN+A</td>
</tr>
<tr>
<td>WIN+spacebar</td>
</tr>
<tr>
<td>WIN+S</td>
</tr>
</tbody>
</table>

Keyboard-Only Commands for Windows 9x/NT4/2000/Me with Any Keyboard

If your mouse stops working, or if you want to work more quickly, use the keys shown in Table 9.3 to perform common Windows actions.
Table 9.3 Keyboard Commands for Windows 9x/NT4/2000/Me

<table>
<thead>
<tr>
<th>Key Combination</th>
<th>Resulting Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Starts Windows Help.</td>
</tr>
<tr>
<td>F10</td>
<td>Activates menu bar options.</td>
</tr>
<tr>
<td>Shift+F10</td>
<td>Opens a context menu (shortcut menu) for the selected item.</td>
</tr>
<tr>
<td>Ctrl+Esc</td>
<td>Opens the Start menu. Use the arrow keys to select an item.</td>
</tr>
<tr>
<td>Ctrl+Esc, Esc</td>
<td>Selects the Start button. Press Tab to select the taskbar, or press Shift+F10 for a context menu.</td>
</tr>
<tr>
<td>Alt+Tab</td>
<td>Switches to another running application. Hold down the Alt key and then press the Tab key to view the task-switching window.</td>
</tr>
<tr>
<td>Shift</td>
<td>Press down and hold the Shift key while you insert a CD-ROM to bypass the AutoPlay feature.</td>
</tr>
<tr>
<td>Alt+spacebar</td>
<td>Displays the main window's System menu. From the System menu, you can restore, move, resize, minimize, maximize, or close the window.</td>
</tr>
<tr>
<td>Alt+ (Alt-hyphen)</td>
<td>Displays the Multiple Document Interface (MDI) child window's System menu. From the MDI child window's System menu, you can restore, move, resize, minimize, maximize, or close the child window.</td>
</tr>
<tr>
<td>Ctrl+Tab</td>
<td>Switches to the next child window of an MDI application.</td>
</tr>
<tr>
<td>Alt+<underlined letter in menu></td>
<td>Opens the corresponding menu.</td>
</tr>
<tr>
<td>Alt+F4</td>
<td>Closes the current window.</td>
</tr>
<tr>
<td>Ctrl+F4</td>
<td>Closes the current MDI window.</td>
</tr>
<tr>
<td>Alt+F6</td>
<td>Switches between multiple windows in the same program. For example, when Notepad's Find dialog box is displayed, Alt+F6 switches between the Find dialog box and the main Notepad window.</td>
</tr>
</tbody>
</table>

Here are the Windows dialog box keyboard commands:

<table>
<thead>
<tr>
<th>Key Combination</th>
<th>Resulting Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tab</td>
<td>Moves to the next control in the dialog box.</td>
</tr>
<tr>
<td>Shift+Tab</td>
<td>Moves to the previous control in the dialog box.</td>
</tr>
<tr>
<td>Spacebar</td>
<td>If the current control is a button, this keyboard command clicks the button. If the current control is a check box, it toggles the check box. If the current control is an option button, it selects the option button.</td>
</tr>
<tr>
<td>Enter</td>
<td>Equivalent to clicking the selected button (the button with the outline).</td>
</tr>
<tr>
<td>Esc</td>
<td>Equivalent to clicking the Cancel button.</td>
</tr>
</tbody>
</table>
Key Combinations and Resulting Actions

<table>
<thead>
<tr>
<th>Key Combination</th>
<th>Resulting Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt+<underlined letter in dialog box item></td>
<td>Moves to the corresponding item.</td>
</tr>
<tr>
<td>Ctrl+Tab/ Ctrl+Shift+Tab</td>
<td>Moves through the property tabs.</td>
</tr>
</tbody>
</table>

These are the keyboard combinations for Windows Explorer tree controls:

<table>
<thead>
<tr>
<th>Key Combination</th>
<th>Resulting Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric Keypad *</td>
<td>Expands everything under the current selection.</td>
</tr>
<tr>
<td>Numeric Keypad +</td>
<td>Expands the current selection.</td>
</tr>
<tr>
<td>Numeric Keypad -</td>
<td>Collapses the current selection.</td>
</tr>
<tr>
<td>Right arrow</td>
<td>Expands the current selection if it is not expanded; otherwise, goes to the first child.</td>
</tr>
<tr>
<td>Left arrow</td>
<td>Collapses the current selection if it is expanded; otherwise, goes to the parent.</td>
</tr>
</tbody>
</table>

Here are the general Windows folder/shortcut controls:

<table>
<thead>
<tr>
<th>Key Combination</th>
<th>Resulting Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>F4</td>
<td>Selects the Go To a Different Folder box and moves down the entries in the box (if the toolbar is active in Windows Explorer).</td>
</tr>
<tr>
<td>F5</td>
<td>Refreshes the current window.</td>
</tr>
<tr>
<td>F6</td>
<td>Moves among panes in Windows Explorer.</td>
</tr>
<tr>
<td>Ctrl+G</td>
<td>Opens the Go To Folder tool (in Windows 95 Windows Explorer only).</td>
</tr>
<tr>
<td>Ctrl+Z</td>
<td>Undoes the last command.</td>
</tr>
<tr>
<td>Ctrl+A</td>
<td>Selects all the items in the current window.</td>
</tr>
<tr>
<td>Backspace</td>
<td>Switches to the parent folder.</td>
</tr>
<tr>
<td>Shift+click</td>
<td>Selects the Close button. (For folders, closes the current folder plus all parent folders.)</td>
</tr>
</tbody>
</table>

These are general folder and Windows Explorer shortcuts for a selected object:

<table>
<thead>
<tr>
<th>Key Combination</th>
<th>Resulting Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2</td>
<td>Renames object.</td>
</tr>
<tr>
<td>F3</td>
<td>Finds all files.</td>
</tr>
<tr>
<td>Ctrl+X</td>
<td>Cuts.</td>
</tr>
<tr>
<td>Ctrl+C</td>
<td>Copies.</td>
</tr>
</tbody>
</table>
Key Combination Resulting Action

<table>
<thead>
<tr>
<th>Key Combination</th>
<th>Resulting Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl+V</td>
<td>Pastes.</td>
</tr>
<tr>
<td>Shift+Del</td>
<td>Deletes selection immediately, without moving the item to the Recycle Bin.</td>
</tr>
<tr>
<td>Alt+Enter</td>
<td>Opens the property sheet for the selected object.</td>
</tr>
<tr>
<td>To copy a file</td>
<td>Press down and hold the Ctrl key while you drag the file to another folder.</td>
</tr>
<tr>
<td>To create a shortcut</td>
<td>Press down and hold Ctrl+Shift while you drag a file to the desktop or a folder.</td>
</tr>
</tbody>
</table>

Standard Versus Portable Keyboards

Table 9.4 lists the differences in configuration and system setup for standard versus portable keyboards.

Table 9.4 Standard and Portable Keyboards Compared

<table>
<thead>
<tr>
<th>Feature</th>
<th>Standard</th>
<th>Portable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key size</td>
<td>Full-sized keys on entire keyboard</td>
<td>Full-sized keys on typing keys only; directional and function keys usually smaller</td>
</tr>
<tr>
<td>Cursor keys</td>
<td>Inverted-T layout standard</td>
<td>Inverted-T layout seldom used; makes “blind” cursor movements difficult</td>
</tr>
<tr>
<td>Numeric keypad</td>
<td>Separate keys at right of directional keys</td>
<td>Embedded into right-hand alphanumeric; should disable numlock in BIOS to avoid keying errors; might require use of Fn key to use</td>
</tr>
<tr>
<td>Add-on keypad</td>
<td>Not needed</td>
<td>Popular option for number-intensive uses; must plug into external port</td>
</tr>
</tbody>
</table>

Keyswitch Types

The most common type of keyswitch is the mechanical type, available in the following variations:

- Pure mechanical
- Foam element
- Rubber dome
- Membrane

Table 9.5 compares user feel, repair, and servicing issues for these keyswitch types.
Table 9.5 Mechanical Keyswitch Types Compared

<table>
<thead>
<tr>
<th>Feature</th>
<th>Pure Mechanical</th>
<th>Foam</th>
<th>Rubber-Dome</th>
<th>Membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tactile feedback</td>
<td>Usually a click</td>
<td>Minimal feedback</td>
<td>Soft click</td>
<td>No click</td>
</tr>
<tr>
<td>Durability and serviceability</td>
<td>High: 20-million keystroke rating</td>
<td>Variable:</td>
<td>High: Rubber dome protects contacts from corrosion</td>
<td>Extreme: No moving parts, sealed unit for harsh industrial environments</td>
</tr>
</tbody>
</table>

The pure mechanical type of keyboard, often using Alps keyswitches, is second only to the keyboards using capacitive switches in terms of tactile feedback and durability. Capacitive keyswitches are rated for up to 25 million keystrokes. Traditionally, the only vendors of capacitive keyswitch keyboards have been IBM and the inheritors of its keyboard technology, Lexmark and Unicomp.

Cleaning a Foam-Element Keyswitch

Figure 9.1 shows a foam-element keyswitch, often found in keyboards sold by Compaq and keyboards manufactured by Keytronics.

![Figure 9.1](image)

The foil contacts at the bottom of the key and the contacts on the circuit board often become dirty or corroded, causing erratic key operation. Disassemble the keyboard to gain access to the foil pads, clean them, and treat them with Stabilant 22a from DW Electrochemicals to improve the switch-contact quality.
If you need to clean or repair a keyboard, you'll find much more information in Chapter 17 of *Upgrading and Repairing PCs, 12th Edition*, from Que.

Adjusting Keyboard Parameters in Windows

To modify the default values for the typematic repeat rate and delay parameters in any version of Windows, open the Keyboard icon in the Control Panel. In Windows 9x/Me/NT/2000, the controls are located on the Speed tab. The Repeat Delay slider controls the amount of times a key must be pressed before the character begins to repeat, and the Repeat Rate slider controls how fast the character repeats after the delay has elapsed. Use the test box to see the effect of the changes you make before you apply them.

Note

The increments on the Repeat Delay and Repeat Rate sliders in the Keyboard Control Panel correspond to the timings given for the MODE command’s RATE and DELAY values. Each mark in the Repeat Delay slider adds about 0.25 seconds to the delay, and the marks in the Repeat Rate slider are worth about one character per second each.

Keyboard Layouts and Scan Codes

Figure 9.2 shows the keyboard numbering and character locations for the 101-key Enhanced keyboard. Table 9.6 shows each of the three scan code sets for each key in relation to the key number and character. Scan Code Set 1 is the default; the other two are rarely used. Figure 9.3 shows the layout of a typical foreign language 102-key version of the Enhanced keyboard—in this case, a U.K. version.

Knowing these key number figures and scan codes is useful when you are troubleshooting stuck or failed keys on a keyboard. Diagnostics can report the defective keyswitch by the scan code, which varies from keyboard to keyboard on the character it represents and its location.
Chapter 9—Keyboards, Mice, and Input Devices

Figure 9.2 101-key Enhanced keyboard key number and character locations (U.S. version).

Figure 9.3 102-key Enhanced keyboard key number and character locations (U.K. English version).

<table>
<thead>
<tr>
<th>Key Number</th>
<th>Key/Character</th>
<th>Scan Code Set 1</th>
<th>Scan Code Set 2</th>
<th>Scan Code Set 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>`</td>
<td>29</td>
<td>0E</td>
<td>0E</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1E</td>
<td>1E</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>6</td>
<td>2E</td>
<td>2E</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>7</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>8</td>
<td>3D</td>
<td>3D</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>9</td>
<td>3E</td>
<td>3E</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0A</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0B</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>0C</td>
<td>4E</td>
<td>4E</td>
</tr>
<tr>
<td>13</td>
<td>=</td>
<td>0D</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>15</td>
<td>Backspace</td>
<td>0E</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>16</td>
<td>Tab</td>
<td>0F</td>
<td>0D</td>
<td>0D</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>10</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>W</td>
<td>11</td>
<td>1D</td>
<td>1D</td>
</tr>
<tr>
<td>Key Number</td>
<td>Key/Character</td>
<td>Scan Code Set 1</td>
<td>Scan Code Set 2</td>
<td>Scan Code Set 3</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>19</td>
<td>E</td>
<td>12</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>20</td>
<td>R</td>
<td>13</td>
<td>2D</td>
<td>2D</td>
</tr>
<tr>
<td>21</td>
<td>T</td>
<td>14</td>
<td>2C</td>
<td>2C</td>
</tr>
<tr>
<td>22</td>
<td>Y</td>
<td>15</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>23</td>
<td>U</td>
<td>16</td>
<td>3C</td>
<td>3C</td>
</tr>
<tr>
<td>24</td>
<td>I</td>
<td>17</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>25</td>
<td>O</td>
<td>18</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>26</td>
<td>P</td>
<td>19</td>
<td>4D</td>
<td>4D</td>
</tr>
<tr>
<td>27</td>
<td>] (101-key only)</td>
<td>2B</td>
<td>5D</td>
<td>5C</td>
</tr>
<tr>
<td>28</td>
<td>} (102-key only)</td>
<td>2B</td>
<td>5B</td>
<td>5B</td>
</tr>
<tr>
<td>30</td>
<td>Caps Lock</td>
<td>3A</td>
<td>5B</td>
<td>14</td>
</tr>
<tr>
<td>31</td>
<td>A</td>
<td>1E</td>
<td>1C</td>
<td>1C</td>
</tr>
<tr>
<td>32</td>
<td>S</td>
<td>1F</td>
<td>1B</td>
<td>1B</td>
</tr>
<tr>
<td>33</td>
<td>D</td>
<td>20</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>34</td>
<td>F</td>
<td>21</td>
<td>2B</td>
<td>2B</td>
</tr>
<tr>
<td>35</td>
<td>G</td>
<td>22</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>36</td>
<td>H</td>
<td>23</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>37</td>
<td>J</td>
<td>24</td>
<td>3B</td>
<td>3B</td>
</tr>
<tr>
<td>38</td>
<td>K</td>
<td>25</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>39</td>
<td>L</td>
<td>26</td>
<td>4B</td>
<td>4B</td>
</tr>
<tr>
<td>40</td>
<td>; (102-key only)</td>
<td>27</td>
<td>4C</td>
<td>4C</td>
</tr>
<tr>
<td>41</td>
<td>‘ (102-key only)</td>
<td>28</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>42</td>
<td># (102-key only)</td>
<td>2B</td>
<td>5D</td>
<td>53</td>
</tr>
<tr>
<td>43</td>
<td>Enter</td>
<td>1C</td>
<td>5A</td>
<td>5A</td>
</tr>
<tr>
<td>44</td>
<td>Left Shift</td>
<td>2A</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>45</td>
<td>\ (102-key only)</td>
<td>56</td>
<td>61</td>
<td>13</td>
</tr>
<tr>
<td>46</td>
<td>Z</td>
<td>2C</td>
<td>1A</td>
<td>1A</td>
</tr>
<tr>
<td>47</td>
<td>X</td>
<td>2D</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>48</td>
<td>C</td>
<td>2E</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>49</td>
<td>V</td>
<td>2F</td>
<td>2A</td>
<td>2A</td>
</tr>
<tr>
<td>50</td>
<td>B</td>
<td>30</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>51</td>
<td>N</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>52</td>
<td>M</td>
<td>32</td>
<td>3A</td>
<td>3A</td>
</tr>
<tr>
<td>53</td>
<td>,</td>
<td>33</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>54</td>
<td>.</td>
<td>34</td>
<td>49</td>
<td>49</td>
</tr>
</tbody>
</table>
Table 9.6 101-/102-Key (Enhanced) Keyboard Key Numbers and Scan Codes Continued

<table>
<thead>
<tr>
<th>Key Number</th>
<th>Key/Character</th>
<th>Scan Code Set 1</th>
<th>Scan Code Set 2</th>
<th>Scan Code Set 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>/</td>
<td>35</td>
<td>4A</td>
<td>4A</td>
</tr>
<tr>
<td>57</td>
<td>Right Shift</td>
<td>36</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>58</td>
<td>Left Ctrl</td>
<td>1D</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>60</td>
<td>Left Alt</td>
<td>38</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>61</td>
<td>Spacebar</td>
<td>39</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>62</td>
<td>Right Alt</td>
<td>E0, 38</td>
<td>E0, 11</td>
<td>39</td>
</tr>
<tr>
<td>64</td>
<td>Right Ctrl</td>
<td>E0, 1D</td>
<td>E0, 14</td>
<td>58</td>
</tr>
<tr>
<td>75</td>
<td>Insert</td>
<td>E0, S2</td>
<td>E0, 70</td>
<td>67</td>
</tr>
<tr>
<td>76</td>
<td>Delete</td>
<td>E0, 53</td>
<td>E0, 71</td>
<td>64</td>
</tr>
<tr>
<td>79</td>
<td>Left arrow</td>
<td>E0, 4B</td>
<td>E0, 68</td>
<td>61</td>
</tr>
<tr>
<td>80</td>
<td>Home</td>
<td>E0, 47</td>
<td>E0, 6C</td>
<td>6E</td>
</tr>
<tr>
<td>81</td>
<td>End</td>
<td>E0, 4F</td>
<td>E0, 69</td>
<td>65</td>
</tr>
<tr>
<td>83</td>
<td>Up arrow</td>
<td>E0, 48</td>
<td>E0, 75</td>
<td>63</td>
</tr>
<tr>
<td>84</td>
<td>Down arrow</td>
<td>E0, 50</td>
<td>E0, 72</td>
<td>60</td>
</tr>
<tr>
<td>85</td>
<td>Page Up</td>
<td>E0, 49</td>
<td>E0, 7D</td>
<td>6F</td>
</tr>
<tr>
<td>86</td>
<td>Page Down</td>
<td>E0, 51</td>
<td>E0, 7A</td>
<td>6D</td>
</tr>
<tr>
<td>89</td>
<td>Right arrow</td>
<td>E0, 4D</td>
<td>E0, 74</td>
<td>6A</td>
</tr>
<tr>
<td>90</td>
<td>Num Lock</td>
<td>45</td>
<td>77</td>
<td>76</td>
</tr>
<tr>
<td>91</td>
<td>Keypad 7 (Home)</td>
<td>47</td>
<td>6C</td>
<td>6C</td>
</tr>
<tr>
<td>92</td>
<td>Keypad 4 (Left arrow)</td>
<td>4B</td>
<td>6E</td>
<td>6B</td>
</tr>
<tr>
<td>93</td>
<td>Keypad 1 (End)</td>
<td>4F</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>95</td>
<td>Keypad /</td>
<td>E0, 35</td>
<td>E0, 4A</td>
<td>77</td>
</tr>
<tr>
<td>96</td>
<td>Keypad 8 (Up arrow)</td>
<td>48</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>97</td>
<td>Keypad 5</td>
<td>4C</td>
<td>73</td>
<td>73</td>
</tr>
<tr>
<td>98</td>
<td>Keypad 2 (Down arrow)</td>
<td>50</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>99</td>
<td>Keypad 0 (Ins)</td>
<td>52</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>100</td>
<td>Keypad *</td>
<td>37</td>
<td>7C</td>
<td>7E</td>
</tr>
<tr>
<td>101</td>
<td>Keypad 9 (PgUp)</td>
<td>49</td>
<td>7D</td>
<td>7D</td>
</tr>
<tr>
<td>102</td>
<td>Keypad 6 (Left arrow)</td>
<td>4D</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>103</td>
<td>Keypad 3 (PgDn)</td>
<td>51</td>
<td>7A</td>
<td>7A</td>
</tr>
<tr>
<td>104</td>
<td>Keypad . (Del)</td>
<td>53</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>105</td>
<td>Keypad -</td>
<td>4A</td>
<td>7B</td>
<td>84</td>
</tr>
<tr>
<td>106</td>
<td>Keypad +</td>
<td>4E</td>
<td>E0, 5A</td>
<td>7C</td>
</tr>
</tbody>
</table>
Table 9.6 101-/102-Key (Enhanced) Keyboard Key Numbers and Scan Codes Continued

<table>
<thead>
<tr>
<th>Key Number</th>
<th>Key/Character</th>
<th>Scan Code Set 1</th>
<th>Scan Code Set 2</th>
<th>Scan Code Set 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>Keypad Enter</td>
<td>E0, 1C</td>
<td>E0, 5A</td>
<td>79</td>
</tr>
<tr>
<td>110</td>
<td>Escape</td>
<td>1</td>
<td>76</td>
<td>8</td>
</tr>
<tr>
<td>112</td>
<td>F1</td>
<td>3B</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>113</td>
<td>F2</td>
<td>3C</td>
<td>6</td>
<td>0F</td>
</tr>
<tr>
<td>114</td>
<td>F3</td>
<td>3D</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>115</td>
<td>F4</td>
<td>3E</td>
<td>0C</td>
<td>1F</td>
</tr>
<tr>
<td>116</td>
<td>F5</td>
<td>3F</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>117</td>
<td>F6</td>
<td>40</td>
<td>0B</td>
<td>2F</td>
</tr>
<tr>
<td>118</td>
<td>F7</td>
<td>41</td>
<td>83</td>
<td>37</td>
</tr>
<tr>
<td>119</td>
<td>F8</td>
<td>42</td>
<td>0A</td>
<td>3F</td>
</tr>
<tr>
<td>120</td>
<td>F9</td>
<td>43</td>
<td>1</td>
<td>47</td>
</tr>
<tr>
<td>121</td>
<td>F10</td>
<td>44</td>
<td>9</td>
<td>4F</td>
</tr>
<tr>
<td>122</td>
<td>F11</td>
<td>57</td>
<td>78</td>
<td>56</td>
</tr>
<tr>
<td>123</td>
<td>F12</td>
<td>58</td>
<td>7</td>
<td>5E</td>
</tr>
<tr>
<td>124</td>
<td>Print Screen</td>
<td>E0, 2A, E0, 37</td>
<td>E0, 12, E0, 7C</td>
<td>57</td>
</tr>
<tr>
<td>125</td>
<td>Scroll Lock</td>
<td>46</td>
<td>7E</td>
<td>5F</td>
</tr>
<tr>
<td>126</td>
<td>Pause</td>
<td>E1, 1D, 45, E1, 9D, C5</td>
<td>E1, 14, 77, E1, F0, 14, F0, 77</td>
<td>62</td>
</tr>
</tbody>
</table>

The additional keys on a 104-key Windows keyboard have their own unique scan codes. Table 9.7 shows the scan codes for the new keys.

Table 9.7 104-Key Windows Keyboard New Key Scan Codes

<table>
<thead>
<tr>
<th>New Key</th>
<th>Scan Code Set 1</th>
<th>Scan Code Set 2</th>
<th>Scan Code Set 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Windows</td>
<td>E0, 5B</td>
<td>E0, 1F</td>
<td>8B</td>
</tr>
<tr>
<td>Right Windows</td>
<td>E0, 5C</td>
<td>E0, 27</td>
<td>8C</td>
</tr>
<tr>
<td>Application</td>
<td>E0, 5D</td>
<td>E0, 2F</td>
<td>8D</td>
</tr>
</tbody>
</table>

Keyboard Connectors

While some of the newest systems offer color-coded keyboard connectors and cables, the best way to recognize the keyboard connector is still to know what it looks like. Two common standards exist, and low-cost adapters are available to switch a device using one
standard to a connector using the other standard. The keyboard connector standards are as follows:

- **5-pin DIN connector**—Used on most PC systems with Baby-AT form factor motherboards.
- **6-pin mini-DIN connector**—Used on PS/2 systems and most PCs with LPX, ATX, and NLX motherboards.
- **USB connector**—Used on “legacy-free” systems that lack PS/2, serial, or parallel ports.

Figure 9.4 and Table 9.8 show the physical layout and pinouts of the respective keyboard connector plugs and sockets for the DIN and mini-DIN connector. Refer to Chapter 8, “USB and IEEE-1394 Ports and Devices,” for USB connectors.

![Figure 9.4](image)

Figure 9.4 Keyboard and mouse connectors.

Keyboard Connector Signals

Table 9.8 lists the keyboard connector signals for three common keyboard connectors.

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>5-Pin DIN</th>
<th>6-Pin Mini-DIN</th>
<th>6-Pin SDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyboard Data</td>
<td>2</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>Ground</td>
<td>4</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>+5V</td>
<td>5</td>
<td>4</td>
<td>E</td>
</tr>
<tr>
<td>Keyboard Clock</td>
<td>1</td>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>Not Connected</td>
<td>—</td>
<td>2</td>
<td>A</td>
</tr>
</tbody>
</table>
Table 9.8 Keyboard Connector Signals Continued

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>5-Pin DIN</th>
<th>6-Pin Mini-DIN</th>
<th>6-Pin SDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Connected</td>
<td>—</td>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>Not Connected</td>
<td>3</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

1. DIN = German Industrial Norm (Deutsche Industrie Norm), a committee that sets German dimensional standards.

2. SDL = Shielded Data Link, a type of shielded connector created by AMP and used by IBM and others for keyboard cables. It is used inside the keyboard housing to attach the cable to the keyboard’s electronics, and the other end of the cable will have the DIN or mini-DIN connector to attach to the computer.

USB Keyboard Requirements

USB (Universal Serial Bus) devices have become increasingly popular, and over the next few years are expected to replace serial, parallel, keyboard, and mouse port connectors with this single, versatile, sharable port (refer to Chapter 8 for more information about USB).

To use a keyboard connected via the USB port, you must meet three requirements:

- Have a USB port in the system
- Run Microsoft Windows 98, Windows Me, or Windows 2000 (all of which include USB keyboard drivers)
- Have USB Legacy support present and enabled in your system BIOS

USB Legacy support means your motherboard ROM BIOS includes drivers to recognize a USB keyboard. Without USB Legacy support in the BIOS, you can’t use a USB keyboard when in MS-DOS or when installing Windows on the system for the first time. Also, if the Windows installation fails and requires manipulation outside Windows, the USB keyboard will not function unless it is supported in the BIOS. Virtually all 1998 and newer systems with USB ports include a BIOS with USB Legacy (meaning USB Keyboard) support.

Keyboard Troubleshooting and Repair

Keyboard errors are usually caused by two simple problems. Other more difficult, intermittent problems can arise, but they are much less common. The most frequent problems are as follows:

- Defective cables
- Stuck keys
Use Table 9.9 to help you troubleshoot a defective keyboard.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Symptoms</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defective cable</td>
<td>No keyboard operation; all keys produce errors or wrong characters.</td>
<td>Swap keyboard with known, working spare. If problem isn’t repeated, original keyboard is the problem. Replace cable with spare (if available, check “scrap” keyboards or vendor spare parts lists) or replace keyboard. Test cable with Digital Multimeter (DMM) with continuity tester; each wire (see pinouts previously) should make a connection, even when you wiggle the cable. Replace failed cable.</td>
</tr>
<tr>
<td>Stuck key</td>
<td>“Stuck key error” or 3xx error onscreen during POST.</td>
<td>Look up scancode from table in this chapter to determine which key is stuck. Clean keyswitch.</td>
</tr>
<tr>
<td>Damaged motherboard keyboard connector</td>
<td>Known-working keyboards don’t work when plugged in.</td>
<td>For a simple test of the motherboard keyboard connector, you can check voltages on some of the pins. Measure the voltages on various pins of the keyboard connector. To prevent possible damage to the system or keyboard, turn off the power before disconnecting the keyboard. Then, unplug the keyboard and turn the power back on. Make measurements between the ground pin and the other pins according to Table 9.10. Repair or replace motherboard if voltage fails specifications.</td>
</tr>
<tr>
<td>USB Keyboard</td>
<td>USB Legacy mode not enabled in BIOS/CMOS configuration.</td>
<td>Connect standard keyboard, start computer, start BIOS/CMOS configuration, enable USB Legacy mode, save changes, and shut down computer. Reconnect USB keyboard and retry; keyboard should now function at all times.</td>
</tr>
</tbody>
</table>
Keyboard Connector Voltage and Signal Specifications

Use Table 9.10 along with a digital multimeter (DMM) to determine whether your keyboard connector is working correctly.

<table>
<thead>
<tr>
<th>DIN Connector Pin</th>
<th>Mini-DIN Connector Pin</th>
<th>Signal</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>Keyboard Clock</td>
<td>+2.0v to +5.5v</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Keyboard Data</td>
<td>+4.8v to +5.5v</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>Reserved</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Ground</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>+5v Power</td>
<td>+2.0v to +5.5v</td>
</tr>
</tbody>
</table>

If your measurements do not match these voltages, the motherboard might be defective. Otherwise, the keyboard cable or keyboard might be defective. If you suspect that the cable is the problem, the easiest thing to do is replace the keyboard cable with a known good one. If the system still does not work normally, you might have to replace the entire keyboard or the motherboard.

Keyboard Error Codes

Some BIOSs use the following 3xx-series numbers to report keyboard errors. These error codes will be displayed onscreen during the startup process. Look up the error code and fix the problem.

Table 9.11 lists some standard POST and diagnostics keyboard error codes.

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3xx</td>
<td>Keyboard errors.</td>
</tr>
<tr>
<td>301</td>
<td>Keyboard reset or stuck-key failure (XX 301; XX = scan code in hex).</td>
</tr>
<tr>
<td>302</td>
<td>System unit keylock switch is locked.</td>
</tr>
<tr>
<td>302</td>
<td>User-indicated keyboard test error.</td>
</tr>
<tr>
<td>303</td>
<td>Keyboard or system-board error; keyboard controller failure.</td>
</tr>
<tr>
<td>304</td>
<td>Keyboard or system-board error; keyboard clock high.</td>
</tr>
<tr>
<td>305</td>
<td>Keyboard +5v error; PS/2 keyboard fuse (on motherboard) blown.</td>
</tr>
<tr>
<td>341</td>
<td>Keyboard error.</td>
</tr>
</tbody>
</table>
Table 9.11 Keyboard POST Codes Continued

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>342</td>
<td>Keyboard cable error.</td>
</tr>
<tr>
<td>343</td>
<td>Keyboard LED card or cable failure.</td>
</tr>
<tr>
<td>365</td>
<td>Keyboard LED card or cable failure.</td>
</tr>
<tr>
<td>366</td>
<td>Keyboard interface cable failure.</td>
</tr>
<tr>
<td>367</td>
<td>Keyboard LED card or cable failure.</td>
</tr>
</tbody>
</table>

Mice and Pointing Devices

Mouse Motion Detection Methods

The most common type of mouse mechanism is the optomechanical, used by Logitech and many other vendors. Dirt on the mouse ball or rollers, or fuzz in the light paths will cause skipping and erratic mouse cursor operation.

Microsoft sells mice based on both mechanical (roller-type) technology and a new optical technology called IntelliEye. The IntelliMouse Optical and IntelliMouse with IntelliEye detect the mouse's motion with a high-speed purely CMOS-based optical sensor that, unlike the old optical mouse designs from Mouse Systems, doesn't require a special pad or special mousing surface. For those who prefer a different color to Microsoft's IntelliEye Red, Logitech's new MouseMan Wheel and Wheel Mouse feature a translucent blue bottom and similar optical detection features.

Although some stores display these mice on a mirrored surface, don't use a mirror or glass as a mousing surface. Your pants leg, airline tray table, or old school tie will work well, though.

Pointing Device Interface Types

The connector used to attach your mouse to the system depends on the type of interface you are using. Mice are most commonly connected to your computer through the following three interfaces:

- Serial port
- Dedicated motherboard mouse port (PS/2 port)
- USB port
Most mice that attach to the USB port can also be adapted to the PS/2 mouse port. Many serial mice are shipped with a PS/2 adapter, too.

The serial port can be seen in Chapter 6, “Serial Ports and Modems.” The PS/2 mouse port is the same mechanical connector as the keyboard 6-pin mini-DIN shown earlier in this chapter, but you cannot interchange the mouse and keyboard.

A fourth connector type, the 9-pin mini-DIN bus-mouse connector, is found on the back of a dedicated bus-mouse interface card or on some old ATI video cards. Bus mice are now considered obsolete, and most cannot be adapted to other types of ports.

Note
Microsoft sometimes calls a bus mouse an *Inport mouse*, which is its proprietary name for a bus mouse connection.

Wireless Mouse Types
The following are the two methods for interfacing wireless mice:

- Radio Control
- Infra-Red(IR)

Radio-controlled mice are sold by Logitech, Microsoft, and other companies. The radio receiver plugs in to the standard mouse interface(s) listed previously, and the mouse is cordless, using a small battery to power its radio transmitter. Older versions of these mice were very bulky when compared to corded mice, but new wireless mice are about the same size as their corded cousins.

IR mice are rare, and are most often combined with IR keyboards. The IR receiver plugs in to the standard mouse (and keyboard) connector, and requires a clear line-of-site between the mouse and the receiver.

Software Drivers for the Mouse
Depending on the operating system you’re using or the operating mode, you might need to manually load a driver, or it might be loaded automatically for you. Use Table 9.12 to determine what’s needed for your mouse.
Mice under Linux are configured through the kernel (for use with standard text-based displays). XFree86-based graphical user interfaces (window managers) require that you specify the device name and mouse protocol used by your mouse or other pointing device. See the manual for your Linux distribution and window manager for details.

Alternative Pointing Devices

Table 9.13 provides an overview of pointing devices used as alternatives to normal mice, including those used with notebook computers.

<table>
<thead>
<tr>
<th>Device</th>
<th>Where Located</th>
<th>How Operated</th>
<th>Tips and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glidepoint Developed by Alps Electric (also called touchpad)</td>
<td>Flat surface below spacebar on notebook PCs; might be separate device or on right side of keyboard on desktop PCs</td>
<td>Move finger across surface; use left and right buttons beneath spacebar, or tap/double-tap with finger in place of click/double-click.</td>
<td>Most commonly used built-in mouse alternative; also available for desktop PCs. Requires you to move hand from keyboard; depends on skin moisture and resistance. Accuracy can be a problem.</td>
</tr>
</tbody>
</table>
Keep in mind that many notebook computer users use “real” mice or trackballs when they have room.

Mouse Troubleshooting

If you are experiencing problems with your mouse, you must look in only two general places—hardware or software. Because mice are basically simple devices, looking at the hardware takes very little time. Detecting and correcting software problems can take a bit longer, however.

Use Table 9.14 to keep your mouse or pointing device in top condition.

<table>
<thead>
<tr>
<th>Table 9.14</th>
<th>Troubleshooting Mouse and Pointing Device Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom</td>
<td>Problem</td>
</tr>
<tr>
<td>Jerky mouse pointer.</td>
<td>Dirt and dust on rollers and ball or sensor.</td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Remove trackball ball from sensor and clean as above. Replace TrackPoint eraserhead with a new cap.</td>
<td></td>
</tr>
<tr>
<td>If mouse is PS/2, be sure no other device is using IRQ 12. If mouse is serial, check for modem on same IRQ as mouse. COM 1/3 share IRQ 4; COM 2/4 share IRQ 3 by default. See Chapter 6 for information on avoiding mouse/modem conflicts. If mouse is bus, check its IRQ usage and try to find an unused IRQ for bus card. Use Windows Device Manager if available to find IRQ information.</td>
<td></td>
</tr>
<tr>
<td>If mouse is bus, check its IRQ usage and try to find an unused IRQ for bus card. Use Windows Device Manager if available to find IRQ information.</td>
<td></td>
</tr>
<tr>
<td>Replace the original mouse with a known-working similar spare. If it works, replace the original mouse for good.</td>
<td></td>
</tr>
<tr>
<td>Any mouse plugged in to the port won’t work. First, check to see whether port is disabled. If the port is not disabled, use add-on port card or replace motherboard.</td>
<td></td>
</tr>
<tr>
<td>Check BIOS or motherboard jumpers and enable if IRQ used by port isn’t already in use.</td>
<td></td>
</tr>
<tr>
<td>Mouse and receiver must be set to same channel; adjust channels on both devices to solve interference problems.</td>
<td></td>
</tr>
<tr>
<td>Check line-of-site issues for IR mouse and receiver.</td>
<td></td>
</tr>
<tr>
<td>Most “bundled” mice are designed for the PS/2 port only. Retail mice are designed to be used with adapters. Get a mouse built for the serial port.</td>
<td></td>
</tr>
</tbody>
</table>

Table 9.14 Troubleshooting Mouse and Pointing Device Problems

Continued
Table 9.14 Troubleshooting Mouse and Pointing Device Problems

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse locks up when accessed by Microsoft MSD or other diagnostic.</td>
<td>Bad mouse.</td>
<td>To verify mouse is the problem, run MSD/i to bypass initial detection. Detect computer and other information; then detect mouse. If the mouse is at fault, you’ll lock up your system. Turn off system, replace with known-working mouse, and repeat. If replacement mouse works okay, you’ve solved the problem.</td>
</tr>
<tr>
<td>Standard left and right mouse buttons work, but middle or scroll buttons don’t work.</td>
<td>Incorrect mouse configuration.</td>
<td>A dual-emulation mouse with a PC/MS slider on the bottom must be set to PC (Mouse Systems) mode to activate the middle button. Most Logitech mice can use the Microsoft driver, but Microsoft mice don’t support three buttons. Use the correct driver for the mouse. Use mouse setup program to verify that the middle button is set to work, and check its function. Original scrolling mouse drivers would work only in Web browsers and a few other applications. Download and install new drivers.</td>
</tr>
<tr>
<td>Button not programmed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse drivers out of date.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Selecting a Monitor Size

Table 10.1 shows the monitor’s advertised diagonal screen size, along with the approximate diagonal measure of the actual active viewing area for the most common display sizes.

<table>
<thead>
<tr>
<th>Monitor CRT Size (in Inches)</th>
<th>Actual Viewing Area (in Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>10 1/2</td>
</tr>
<tr>
<td>14</td>
<td>12 1/2</td>
</tr>
<tr>
<td>15</td>
<td>13 1/2</td>
</tr>
<tr>
<td>16</td>
<td>14 1/2</td>
</tr>
<tr>
<td>17</td>
<td>15 1/2</td>
</tr>
<tr>
<td>18</td>
<td>16 1/2</td>
</tr>
<tr>
<td>19</td>
<td>17 1/2</td>
</tr>
<tr>
<td>20</td>
<td>18 1/2</td>
</tr>
<tr>
<td>21</td>
<td>19 1/2</td>
</tr>
</tbody>
</table>

The size of the actual viewable area varies from manufacturer to manufacturer but tends to be approximately 1 1/2 inches less than the actual screen size. However, you can adjust some monitors—such as some models made by NEC, for example—to display a high-quality image that completely fills the tube from edge to edge. Other makes can fill the screen also, but some of them do so only by pushing the monitor beyond its comfortable limits. The result is a distorted image that is worse than the monitor’s smaller, properly adjusted picture.

This phenomenon is a well-known monitor-purchasing issue, and as a result, most manufacturers and vendors have begun advertising the size of the active viewing area of their monitors along with the screen size. This makes it easier for consumers to compare what they are paying for.
Monitor Resolution

Resolution is the amount of detail a monitor can render. This quantity is expressed in the number of horizontal and vertical picture elements, or pixels, contained in the screen. The greater the number of pixels, the more detailed the images. Pixels also are referred to as pels, which is short for picture elements. The resolution required depends on the application. Character-based applications (such as DOS command-line programs) require little resolution, whereas graphics-intensive applications (such as desktop publishing and Windows software) require a great deal.

CRTs Versus LCDs

CRTs can handle a wide range of resolutions, but LCD panels of any type must use scaling to change to resolutions other than their native setting.

Common Monitor Resolutions

Table 10.2 shows standard resolutions used in PC video adapters and the terms commonly used to describe them.

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Acronym</th>
<th>Standard Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>640×480</td>
<td>VGA</td>
<td>Video graphics array</td>
</tr>
<tr>
<td>800×600</td>
<td>SVGA</td>
<td>Super VGA</td>
</tr>
<tr>
<td>1,024×768</td>
<td>XGA</td>
<td>Extended graphics array</td>
</tr>
<tr>
<td>1,280×1,024</td>
<td>UVGA</td>
<td>Ultra VGA</td>
</tr>
</tbody>
</table>

However, the terms SVGA, XGA, and UVGA have fallen into disuse. The industry now describes screen resolutions by citing the number of pixels. Nearly all the video adapters sold today support the 640×480, 800×600, and 1,024×768 pixel resolutions at several color depths, and most now support 1,280×1,024 and higher as well.

Note

To understand this issue, you might want to try different resolutions on your system. As you change from 640×480 to 800×600 and 1024×768, you’ll notice several changes to the appearance of your screen.

At 640×480, text and onscreen icons are very large. Because the screen elements used for the Windows desktop and software menus are at a fixed pixel width and height, you’ll notice that they shrink in size onscreen as you change to the higher resolutions. Some
recent versions of Windows, starting with Windows 98, let you select a large icons option in the Display properties sheet. This enables you to use high-resolution selections (which help you see more of your document) and still have large, legible icons.

Table 10.3 shows the minimum-size monitors I recommend to properly display the resolutions that users typically select.

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Minimum Recommended Monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>640×480</td>
<td>13-inch</td>
</tr>
<tr>
<td>800×600</td>
<td>15-inch</td>
</tr>
<tr>
<td>1,024×768</td>
<td>17-inch</td>
</tr>
<tr>
<td>1,280×1,024</td>
<td>21-inch</td>
</tr>
</tbody>
</table>

LCD Versus CRT Display Size

LCD panels, especially all-digital units, provide high-quality displays that are always crisp and perfectly focused. Plus, their dimensions are fully usable and can comfortably display higher resolutions than comparably sized CRTs. Table 10.4 provides common CRT screen sizes and the comparable LCD display panel sizes.

<table>
<thead>
<tr>
<th>CRT Monitor Size Display (in Inches)</th>
<th>CRT Viewing Area (in Inches)</th>
<th>Comparable LCD (Also Viewing Area in Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>12.5</td>
<td>12.1</td>
</tr>
<tr>
<td>15</td>
<td>13.5</td>
<td>13.3, 13.7</td>
</tr>
<tr>
<td>16</td>
<td>14.5</td>
<td>14.1, 14.5</td>
</tr>
<tr>
<td>17</td>
<td>15.5</td>
<td>15, 15.1</td>
</tr>
<tr>
<td>19</td>
<td>17.5</td>
<td>17, 17.1</td>
</tr>
<tr>
<td>20</td>
<td>18.5</td>
<td>18.1</td>
</tr>
</tbody>
</table>

As you can see, a 15-inch LCD actually provides a usable viewing area similar to a 17-inch CRT.

Monitor Power Management Modes

One of the first energy-saving standards for monitors was VESA's Display Power Management Signaling (DPMS) spec, which defines the signals a computer sends to a monitor to indicate idle times. The computer or video card decides when to send these signals.
In Windows 9x and 2000, you need to enable this feature if you want to use it because it’s turned off by default. To enable it, open the Display properties in the Control Panel, switch to the Screen Saver tab and make sure the Energy Star low-power setting and Monitor shutdown setting are checked. You can adjust how long the system remains idle before either the monitor picture is blanked or the monitor shuts down completely. Windows Me defaults to suspend after 10 minutes, but timings can be adjusted with any of these versions of Windows.

Table 10.5 summarizes the DPMS modes.

<table>
<thead>
<tr>
<th>State</th>
<th>Horizontal</th>
<th>Vertical</th>
<th>Video</th>
<th>Power Savings</th>
<th>Recovery Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Pulses</td>
<td>Pulses</td>
<td>Active</td>
<td>None</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Standby</td>
<td>No pulses</td>
<td>Pulses</td>
<td>Blanked</td>
<td>Minimal</td>
<td>Short</td>
</tr>
<tr>
<td>Suspend</td>
<td>Pulses</td>
<td>No pulses</td>
<td>Blanked</td>
<td>Substantial</td>
<td>Longer</td>
</tr>
<tr>
<td>Off</td>
<td>No pulses</td>
<td>No pulses</td>
<td>Blanked</td>
<td>Maximum</td>
<td>System dependent</td>
</tr>
</tbody>
</table>

Microsoft and Intel developed a more broadly based power management specification called APM (advanced power management), and Microsoft developed an even more advanced power management specification called ACPI (advanced configuration and power interface) for use with Windows 98 and beyond. Table 10.6 summarizes the differences between DPMS, APM, and ACPI.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Devices Controlled</th>
<th>How Implemented</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPMS</td>
<td>Monitor and video card</td>
<td>Drivers for display and video card; must be enabled by operating system, such as Windows 9x/2000/Me via Control Panel</td>
<td>DPMS will work along-side APM or ACPI; user defines timer intervals for various modes listed.</td>
</tr>
<tr>
<td>APM</td>
<td>Monitor, hard disks, other peripherals</td>
<td>Implemented in BIOS; enabled in BIOS and in operating system (Windows 9x/2000/Me via Control Panel)</td>
<td>User defines timer intervals for various devices in BIOS or operating system.</td>
</tr>
</tbody>
</table>
Table 10.6 Power Management Standards Compared Continued

<table>
<thead>
<tr>
<th>Standard</th>
<th>Devices Controlled</th>
<th>How Implemented</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACPI</td>
<td>All APM peripherals plus other PC and consumer devices</td>
<td>Implemented in BIOS; support must be present in BIOS and devices; supports automatic power-up and power-off for PC and consumer devices including printers, stereos, CDs, and others</td>
<td>If ACPI support is present in the BIOS when Windows 98/Me/2000 is first installed, Windows ACPI drivers are installed; update BIOS before installing Windows if ACPI support is not present in BIOS.</td>
</tr>
</tbody>
</table>

VGA Video Connector Pinouts
Illustrations of all the following connectors can be seen in Chapter 14, “Connector Quick Reference.”

VGA DB-15 Analog Connector Pinout
Virtually all displays in use today are descended from the 1987-vintage IBM VGA display introduced with the IBM PS/2s. The connector pinout is shown in Table 10.7.

Table 10.7 Standard 15-Pin VGA Connector Pinout

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Red Video</td>
<td>Out</td>
</tr>
<tr>
<td>2</td>
<td>Green Video</td>
<td>Out</td>
</tr>
<tr>
<td>3</td>
<td>Blue Video</td>
<td>Out</td>
</tr>
<tr>
<td>4</td>
<td>Monitor ID 2</td>
<td>In</td>
</tr>
<tr>
<td>5</td>
<td>TTL Ground</td>
<td>—— (monitor self-test)</td>
</tr>
<tr>
<td>6</td>
<td>Red Analog Ground</td>
<td>In</td>
</tr>
<tr>
<td>7</td>
<td>Green Analog Ground</td>
<td>In</td>
</tr>
<tr>
<td>8</td>
<td>Blue Analog Ground</td>
<td>In</td>
</tr>
<tr>
<td>9</td>
<td>Key (Plugged Hole)</td>
<td>In</td>
</tr>
<tr>
<td>10</td>
<td>Sync Ground</td>
<td>In</td>
</tr>
<tr>
<td>11</td>
<td>Monitor ID 0</td>
<td>In</td>
</tr>
<tr>
<td>12</td>
<td>Monitor ID 1</td>
<td>In</td>
</tr>
<tr>
<td>13</td>
<td>Horizontal Sync</td>
<td>Out</td>
</tr>
<tr>
<td>14</td>
<td>Vertical Sync</td>
<td>Out</td>
</tr>
<tr>
<td>15</td>
<td>Monitor ID 3</td>
<td>In</td>
</tr>
</tbody>
</table>
On the VGA cable connector that plugs into your video adapter, pin 9 is often pinless. Pin 5 is used only for testing purposes, and pin 15 is rarely used (these are often pinless as well). To identify the type of monitor connected to the system, some manufacturers use the presence or absence of the monitor ID pins in various combinations.

Digital Flat Panel Pinouts

The Digital Flat Panel (DFP) is a Video Electronic Standards Association specification for digital video displays, especially LCD panels. It was adopted in February 1999, but it already has been superseded for most uses by the DVI standard, discussed in the next section. The DFP supports a maximum resolution of 1280×1024 and transmits only digital signals. The DFP connector has two rows of edge connectors.

Table 10.8 provides the pinouts for DFP. DFP panels can be adapted to the newer DVI by the use of an adapter cable because both standards use the same TDMS PanelLink digital transfer protocol.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TX1+</td>
<td>TDMS Positive Differential output, channel 1</td>
</tr>
<tr>
<td>2</td>
<td>TX1-</td>
<td>TDMS Negative Differential output, channel 1</td>
</tr>
<tr>
<td>3</td>
<td>SHLD1</td>
<td>Shield for TDMS channel 1</td>
</tr>
<tr>
<td>4</td>
<td>SHLDC</td>
<td>Shield for TDMS clock</td>
</tr>
<tr>
<td>5</td>
<td>TXC+</td>
<td>TDMS Positive Differential output, reference clock</td>
</tr>
<tr>
<td>6</td>
<td>TXC-</td>
<td>TDMS Negative Differential output, reference clock</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>Logic ground</td>
</tr>
<tr>
<td>8</td>
<td>+5V</td>
<td>Logic +5V power supply from host</td>
</tr>
<tr>
<td>9</td>
<td>No Connect 9</td>
<td>No connection</td>
</tr>
<tr>
<td>10</td>
<td>No Connect 10</td>
<td>No connection</td>
</tr>
<tr>
<td>11</td>
<td>TX2+</td>
<td>TDMS Positive Differential output, channel 2</td>
</tr>
<tr>
<td>12</td>
<td>TX2-</td>
<td>TDMS Negative Differential output, channel 2</td>
</tr>
<tr>
<td>13</td>
<td>SHLD2</td>
<td>Shield for TDMS channel 1</td>
</tr>
<tr>
<td>14</td>
<td>SHLD0</td>
<td>Shield for TDMS channel 0</td>
</tr>
<tr>
<td>15</td>
<td>TX0+</td>
<td>TDMS Positive Differential output, channel 0</td>
</tr>
<tr>
<td>16</td>
<td>TX0-</td>
<td>TDMS Negative Differential output, channel 0</td>
</tr>
<tr>
<td>17</td>
<td>No Connect 17</td>
<td>No connection</td>
</tr>
<tr>
<td>18</td>
<td>HPD</td>
<td>Host Plug Detection (+5V DC to host)</td>
</tr>
</tbody>
</table>
Digital Visual Interface Pinouts
The Digital Visual Interface (DVI) connector is used on an increasing number of LCD display panels as well as some CRT monitors. Many of the newest high-performance video cards feature either the DVI-D (digital only) or DVI-I (digital and analog) version of this connector. DVI can support either high-resolution (dual-link, which is above 1280×1024 resolution) or low-resolution (single-link, which has a maximum of 1280×1024 resolution) displays. DVI connectors use three rows of square pins, with pin 14 (power) recessed.

Dual-link displays use all the connectors shown in Table 10.9, whereas single-link displays omit some connectors.

Video cards that have only a DVI-I connector usually come with a special video cable that can connect to either analog VGA or DVI digital display types.

Table 10.9 lists the pin assignments used by both DVI-D and DVI-I connectors.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal</th>
<th>How It Is Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TMDS Data 2-</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>TMDS Data 2+</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TMDS Data 4/4 Shield</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TMDS Data 4-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>TMDS Data 4+</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DDC Clock</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DDC Data</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Analog Vertical Sync</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>TMDS Data 1-</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TMDS Data 1+</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TMDS Data 1/3 Shield</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>TMDS Data 3-</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>TMDS Data 3+</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>+5V Power</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Ground (+5, Analog H/V Sync)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Hot Plug Detect</td>
<td></td>
</tr>
</tbody>
</table>
DVI-I also has the following MicroCross/high-speed pins, which are shown in Table 10.10.

Table 10.10 DVI-I Additional Connectors

<table>
<thead>
<tr>
<th>Pin</th>
<th>How It Is Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>TMDS Data 0/5 Shield</td>
</tr>
<tr>
<td>20</td>
<td>TMDS Data 5-</td>
</tr>
<tr>
<td>21</td>
<td>TMDS Data 5+</td>
</tr>
<tr>
<td>22</td>
<td>TMDS Clock Shield</td>
</tr>
<tr>
<td>23</td>
<td>TMDS Clock+</td>
</tr>
<tr>
<td>24</td>
<td>TMDS Clock-</td>
</tr>
</tbody>
</table>

Table 10.11 Chips and Technologies 65554 Graphics Accelerator

Chipset Video Modes

<table>
<thead>
<tr>
<th>BIOS Mode</th>
<th>Mode Type</th>
<th>Resolution</th>
<th>Character</th>
<th>Colors (Displayed from Palette)</th>
<th>Scan Freq. (Hor./Vert.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1</td>
<td>VGA Text</td>
<td>40x25 char</td>
<td>9x16</td>
<td>16KB/256KB</td>
<td>31.5KHz/70Hz</td>
</tr>
<tr>
<td>2, 3</td>
<td>VGA Text</td>
<td>80x25 char</td>
<td>9x16</td>
<td>16KB/256KB</td>
<td>31.5KHz/70Hz</td>
</tr>
<tr>
<td>4, 5</td>
<td>VGA Graph</td>
<td>320x200 pels</td>
<td>8x8</td>
<td>4KB/256KB</td>
<td>31.5KHz/70Hz</td>
</tr>
<tr>
<td>6</td>
<td>VGA Graph</td>
<td>640x200 pels</td>
<td>8x8</td>
<td>2KB/256KB</td>
<td>31.5KHz/70Hz</td>
</tr>
<tr>
<td>7</td>
<td>VGA Text</td>
<td>80x25 char</td>
<td>9x16</td>
<td>Mono</td>
<td>31.5KHz/70Hz</td>
</tr>
<tr>
<td>D</td>
<td>VGA Graph</td>
<td>320x200 pels</td>
<td>8x8</td>
<td>16KB/256KB</td>
<td>31.5KHz/70Hz</td>
</tr>
<tr>
<td>E</td>
<td>VGA Graph</td>
<td>640x200 pels</td>
<td>8x8</td>
<td>16KB/256KB</td>
<td>31.5KHz/70Hz</td>
</tr>
<tr>
<td>F</td>
<td>VGA Graph</td>
<td>640x350 pels</td>
<td>8x14</td>
<td>Mono</td>
<td>31.5KHz/70Hz</td>
</tr>
</tbody>
</table>

VGA Video Display Modes

Depending on the application, you might need to identify a desired mode by the BIOS mode numbers listed in this section.

Table 10.11 lists the video modes of the chips and technologies 65554 SVGA graphics accelerator, a typical chipset used today.
<table>
<thead>
<tr>
<th>BIOS Mode</th>
<th>Mode Type</th>
<th>Resolution</th>
<th>Character</th>
<th>Colors (Displayed from Palette)</th>
<th>Scan Freq. (Hor./Vert.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>VGA Graph</td>
<td>640×350 pels</td>
<td>8×14</td>
<td>16KB/256KB</td>
<td>31.5kHz/70Hz</td>
</tr>
<tr>
<td>11</td>
<td>VGA Graph</td>
<td>640×480 pels</td>
<td>8×16</td>
<td>2KB/256KB</td>
<td>31.5kHz/60Hz</td>
</tr>
<tr>
<td>12</td>
<td>VGA Graph</td>
<td>640×480 pels</td>
<td>8×16</td>
<td>16KB/256KB</td>
<td>31.5kHz/60Hz</td>
</tr>
<tr>
<td>13</td>
<td>VGA Graph</td>
<td>320×200 pels</td>
<td>8×8</td>
<td>256KB/256KB</td>
<td>31.5kHz/70Hz</td>
</tr>
<tr>
<td>20</td>
<td>SVGA Graph</td>
<td>640×480 pels</td>
<td>8×16</td>
<td>16KB/256KB</td>
<td>31.5kHz/60Hz</td>
</tr>
<tr>
<td>22</td>
<td>SVGA Graph</td>
<td>800×600 pels</td>
<td>8×8</td>
<td>16KB/256KB</td>
<td>37.9kHz/60Hz</td>
</tr>
<tr>
<td>24</td>
<td>SVGA Graph</td>
<td>1024×768 pels</td>
<td>8×16</td>
<td>16KB/256KB</td>
<td>35.5kHz/87Hz*</td>
</tr>
<tr>
<td>28</td>
<td>SVGA Graph</td>
<td>1280×1024 pels</td>
<td>8×16</td>
<td>16KB/256KB</td>
<td>35.5kHz/87Hz*</td>
</tr>
<tr>
<td>30</td>
<td>SVGA Graph</td>
<td>640×480 pels</td>
<td>8×16</td>
<td>256KB/256KB</td>
<td>31.5kHz/60Hz</td>
</tr>
<tr>
<td>32</td>
<td>SVGA Graph</td>
<td>800×600 pels</td>
<td>8×16</td>
<td>256KB/256KB</td>
<td>37.9kHz/60Hz</td>
</tr>
<tr>
<td>34</td>
<td>SVGA Graph</td>
<td>1024×768 pels</td>
<td>8×16</td>
<td>256KB/256KB</td>
<td>35.5kHz/87Hz*</td>
</tr>
<tr>
<td>38</td>
<td>SVGA Graph</td>
<td>1280×1024 pels</td>
<td>8×16</td>
<td>256KB/256KB</td>
<td>35.5kHz/87Hz*</td>
</tr>
<tr>
<td>40</td>
<td>SVGA Graph</td>
<td>640×480 pels</td>
<td>8×16</td>
<td>32KB/32KB</td>
<td>31.5kHz/60Hz</td>
</tr>
<tr>
<td>41</td>
<td>SVGA Graph</td>
<td>640×480 pels</td>
<td>8×16</td>
<td>64KB/64KB</td>
<td>31.5kHz/60Hz</td>
</tr>
<tr>
<td>42</td>
<td>SVGA Graph</td>
<td>800×600 pels</td>
<td>8×16</td>
<td>32KB/32KB</td>
<td>37.9kHz/60Hz</td>
</tr>
</tbody>
</table>
Table 10.11 Chips and Technologies 65554 Graphics Accelerator Chipset Video Modes Continued

<table>
<thead>
<tr>
<th>BIOS Mode</th>
<th>Mode Type</th>
<th>Resolution</th>
<th>Character</th>
<th>Colors (Displayed from Palette)</th>
<th>Scan Freq. (Hor./Vert.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>SVGA Graph</td>
<td>800×600 pels</td>
<td>8×16</td>
<td>64KB/64KB</td>
<td>37.9KHz/60Hz 46.9KHz/75Hz 53.7KHz/85Hz</td>
</tr>
<tr>
<td>44</td>
<td>SVGA Graph</td>
<td>1024×768 pels</td>
<td>8×16</td>
<td>32KB/32KB</td>
<td>48.5KHz/60Hz</td>
</tr>
<tr>
<td>45</td>
<td>SVGA Graph</td>
<td>1024×768 pels</td>
<td>8×16</td>
<td>64KB/64KB</td>
<td>48.5KHz/60Hz</td>
</tr>
<tr>
<td>50</td>
<td>SVGA Graph</td>
<td>640×480 pels</td>
<td>8×16</td>
<td>16MB/16MB</td>
<td>31.5KHz/60Hz</td>
</tr>
<tr>
<td>52</td>
<td>SVGA Graph</td>
<td>800×600 pels</td>
<td>8×16</td>
<td>16MB/16MB</td>
<td>37.9KHz/60Hz</td>
</tr>
</tbody>
</table>

Interlaced displays draw half the screen lines in a single pass. Lines 1, 3, 5, 7, and so forth are drawn in one pass of the electron gun. The second pass draws lines 2, 4, 6, 8, and so on. Interlacing was once common, but is now rare because of improvements in monitor design. Any interlaced display will be prone to eye-straining flicker. Flicker can be minimized by using a dark-glass glare screen.

From the standpoint of user comfort, you should use this type of information, supplied with both graphics cards and monitors, to select the most comfortable viewing settings. Comfortable viewing comes from the optimal combination of resolution, color depth, and vertical refresh rates.

In deciding whether a video card is suitable for a particular task, or whether it’s obsolete and should be replaced, the amount of video RAM on the card is a critical factor.

Video RAM

Video adapters rely on their own onboard memory that they use to store video images while processing them. The amount of memory on the adapter determines the maximum screen resolution and color depth that the device can support.

Most cards today come with at least 4MB, and many have 8MB or more. Although adding more memory is not guaranteed to speed up your video adapter, it can increase the speed if it enables a wider bus (from 64 bits wide to 128 bits wide) or provides non-display memory as a cache for commonly displayed objects. It also enables the card to generate more colors and higher resolutions.

Many different types of memory are used on video adapters today. These memory types are summarized in Table 10.12.
Table 10.12 Memory Types Used in Video Display Adapters

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Definition</th>
<th>Relative Speed</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPM DRAM</td>
<td>Fast Page-Mode RAM</td>
<td>Slow</td>
<td>Low-end ISA cards; obsolete</td>
</tr>
<tr>
<td>VRAM¹</td>
<td>Video RAM</td>
<td>Very fast</td>
<td>Expensive; rare today</td>
</tr>
<tr>
<td>WRAM¹</td>
<td>Window RAM</td>
<td>Very fast</td>
<td>Expensive; rare today</td>
</tr>
<tr>
<td>EDO DRAM</td>
<td>Extended Data Out DRAM</td>
<td>Moderate</td>
<td>Low-end PCI-bus</td>
</tr>
<tr>
<td>SDRAM</td>
<td>Synchronous DRAM</td>
<td>Fast</td>
<td>Midrange PCI/AGP</td>
</tr>
<tr>
<td>MDRAM</td>
<td>Multibank DRAM</td>
<td>Fast</td>
<td>Infrequently used; rare</td>
</tr>
<tr>
<td>SGRAM</td>
<td>Synchronous Graphics DRAM</td>
<td>Very fast</td>
<td>High-end PCI/AGP</td>
</tr>
<tr>
<td>DDR SDRAM²</td>
<td>Double Data-Rate Synchronous DRAM</td>
<td>Very Fast</td>
<td>High-end AGP</td>
</tr>
</tbody>
</table>

1. VRAM and WRAM are dual-ported memory types that can read from one port and write data through the other port. This improves performance by reducing wait times for accessing the video RAM.

2. DDR SDRAM can send and receive signals on both the rising and falling parts of a cycle, effectively doubling its speed over normal SDRAM. Because it is otherwise similar to conventional SDRAM, several vendors have introduced faster DDR SDRAM versions of existing video cards.

Memory, Resolution, and Color Depth

For maximum realism in such tasks as full-motion video playback, videoconferencing, and photo-editing, a color depth of 24 bits (over 16 million colors) is desirable at the highest comfortable display resolution possible with your monitor.

Use Tables 10.13 and 10.14 to determine whether your video card has the required memory to display some of the most commonly used screen resolutions and color depths.

Table 10.13 Video Display Adapter Minimum Memory Requirements—2-D Operation

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Color Depth</th>
<th>Number of Colors</th>
<th>RAM on Video Card</th>
<th>Memory Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>640×480</td>
<td>4-bit</td>
<td>16</td>
<td>256KB</td>
<td>153,600 bytes</td>
</tr>
<tr>
<td>640×480</td>
<td>8-bit</td>
<td>256</td>
<td>512KB</td>
<td>307,200 bytes</td>
</tr>
<tr>
<td>640×480</td>
<td>16-bit</td>
<td>65,536</td>
<td>1MB</td>
<td>614,400 bytes</td>
</tr>
<tr>
<td>640×480</td>
<td>24-bit</td>
<td>16,777,216</td>
<td>1MB</td>
<td>921,600 bytes</td>
</tr>
<tr>
<td>800×600</td>
<td>4-bit</td>
<td>16</td>
<td>256KB</td>
<td>240,000 bytes</td>
</tr>
<tr>
<td>800×600</td>
<td>8-bit</td>
<td>256</td>
<td>512KB</td>
<td>480,000 bytes</td>
</tr>
<tr>
<td>800×600</td>
<td>16-bit</td>
<td>65,536</td>
<td>1MB</td>
<td>960,000 bytes</td>
</tr>
<tr>
<td>800×600</td>
<td>24-bit</td>
<td>16,777,216</td>
<td>2MB</td>
<td>1,440,000 bytes</td>
</tr>
</tbody>
</table>
Table 10.13 Video Display Adapter Minimum Memory Requirements—2-D Operation Continued

<table>
<thead>
<tr>
<th>Resolution × Resolution</th>
<th>Color Depth</th>
<th>Number of Colors</th>
<th>RAM on Video Card</th>
<th>Memory Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,024 × 768</td>
<td>4-bit</td>
<td>16</td>
<td>512KB</td>
<td>393,216 bytes</td>
</tr>
<tr>
<td>1,024 × 768</td>
<td>8-bit</td>
<td>256</td>
<td>1MB</td>
<td>786,432 bytes</td>
</tr>
<tr>
<td>1,024 × 768</td>
<td>16-bit</td>
<td>65,536</td>
<td>2MB</td>
<td>1,572,864 bytes</td>
</tr>
<tr>
<td>1,024 × 768</td>
<td>24-bit</td>
<td>16,777,216</td>
<td>4MB</td>
<td>2,359,296 bytes</td>
</tr>
<tr>
<td>1,280 × 1,024</td>
<td>4-bit</td>
<td>16</td>
<td>1MB</td>
<td>655,360 bytes</td>
</tr>
<tr>
<td>1,280 × 1,024</td>
<td>8-bit</td>
<td>256</td>
<td>2MB</td>
<td>1,310,720 bytes</td>
</tr>
<tr>
<td>1,280 × 1,024</td>
<td>16-bit</td>
<td>65,536</td>
<td>4MB</td>
<td>2,621,440 bytes</td>
</tr>
<tr>
<td>1,280 × 1,024</td>
<td>24-bit</td>
<td>16,777,216</td>
<td>4MB</td>
<td>3,932,160 bytes</td>
</tr>
</tbody>
</table>

From this table, you can see that a video adapter with 2MB can display 65,536 colors in 1,024 × 768 resolution mode, but for a true color (16.8M colors) display, you would need to upgrade to 4MB or reduce resolution to 800 × 600.

Although many of the newest video cards on the market today have memory sizes of 8MB, 16MB, or even 32MB, this additional memory will not be used for 24-bit color in high resolutions for 2-D graphics unless the display resolution exceeds 1,280 × 1,024 at 24-bit color. The additional RAM is used for 3-D texture mapping and display caching.

Use Table 10.14 to determine whether you have sufficient display memory for the desired 3-D video operation.

Table 10.14 Video Display Adapter Memory Requirements—3-D Operation

<table>
<thead>
<tr>
<th>Resolution × Resolution</th>
<th>Color Depth</th>
<th>On-Board Video RAM</th>
<th>Actual Memory Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>640 × 480</td>
<td>16-bit</td>
<td>2MB</td>
<td>1.77MB</td>
</tr>
<tr>
<td>640 × 480</td>
<td>32-bit'</td>
<td>4MB</td>
<td>2.93MB</td>
</tr>
<tr>
<td>800 × 600</td>
<td>16-bit</td>
<td>4MB</td>
<td>2.76MB</td>
</tr>
<tr>
<td>800 × 600</td>
<td>32-bit'</td>
<td>8MB</td>
<td>4.58MB</td>
</tr>
<tr>
<td>1,024 × 768</td>
<td>16-bit</td>
<td>8MB</td>
<td>4.50MB</td>
</tr>
<tr>
<td>1,024 × 768</td>
<td>32-bit'</td>
<td>8MB</td>
<td>7.50MB</td>
</tr>
<tr>
<td>1,280 × 1,024</td>
<td>16-bit</td>
<td>8MB</td>
<td>7.50MB</td>
</tr>
</tbody>
</table>

1. Although 3-D adapters typically operate in a 32-bit mode, this does not necessarily mean that they can produce more than the 16,777,216 colors of a 24-bit true color display. Many video processors and video memory buses are optimized to move data in 32-bit words, and they actually display 24-bit color while operating in a 32-bit mode, instead of the 4,294,967,296 colors that you would expect from a true 32-bit color depth.
Determining the Amount of RAM on Your Display Card

Because the size of video memory is increasingly important to most computer users, it’s useful to know how much memory your display card has onboard. Table 10.15 summarizes some methods you can use.

Table 10.15 Methods for Determining the Amount of RAM on a Video Card

<table>
<thead>
<tr>
<th>Method</th>
<th>Benefits</th>
<th>Cautions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use memory/resolution table earlier and adjust video settings to options requiring 1MB, 2MB, 4MB, and 8MB.</td>
<td>If the settings work (a reboot is often required), you have at least that much RAM on your video card.</td>
<td>Method assumes that video card is set correctly by system; often can’t be used to detect memory above 4MB because of driver limitations.</td>
</tr>
<tr>
<td>Use third-party system diagnostics to probe video card.</td>
<td>Universal solution for organizations with mixed display card standards.</td>
<td>Must use up-to-date diagnostics; might be confused by shared memory technologies found on low-cost systems.</td>
</tr>
<tr>
<td>Use diagnostics provided by video card or video chipset maker to probe video card.</td>
<td>Best source for technical information.</td>
<td>Must use different programs for different chipsets.</td>
</tr>
</tbody>
</table>

Given the low cost and high performance of today’s video cards, you should seriously consider replacing any video card with less than 8MB of display memory onboard because even the least powerful cards in use today far outstrip top-end models of just a couple of years ago.

Local-Bus Video Standards

If you are in the market for a new video card, you need to consider your upgrade options. All video cards worth considering use a so-called local-bus technology, which uses a high-speed connection to the CPU that bypasses the slow ISA standard in use for many years. The major current standards are PCI (Peripheral Component Interconnect) and AGP (Advanced Graphics Port). The original local-bus standard, VL-Bus (the VESA Local-Bus), became outdated when the 486 CPU was replaced by Pentium-class CPUs.

PCI and AGP have some important differences, as Table 10.16 shows.
Table 10.16 Local Bus Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>PCI</th>
<th>AGP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical maximum</td>
<td>132MB/sec</td>
<td>533MB/sec throughput (2X)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.06GB/sec throughput (4X)</td>
</tr>
<tr>
<td>Slots</td>
<td>4/5 (typical)</td>
<td>1</td>
</tr>
<tr>
<td>Plug and Play support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cost</td>
<td>Slightly higher</td>
<td>Slightly higher than PCI</td>
</tr>
<tr>
<td>Ideal use</td>
<td>High-end 486, Pentium, P6</td>
<td>Pentium II, III, Celeron, AMD K6, K7</td>
</tr>
</tbody>
</table>

1. At the 66MHz bus speed and 32 bits. Throughput will be higher on the 100MHz system bus.
2. More slots are possible through the use of PCI bridge chips.

Obviously, of the three local-bus standards, AGP is the fastest, but only very recent systems offer AGP video. Use Table 10.17 to determine what your best video upgrade is, depending on your system.

Table 10.17 Best Video Upgrades by CPU and Slot Type

<table>
<thead>
<tr>
<th>CPU</th>
<th>Slot Type</th>
<th>Best Option</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>486</td>
<td>VL-Bus</td>
<td>No current video cards available in VL-Bus; obsolete.</td>
<td>Buy used or surplus; replace motherboard; retire system.</td>
</tr>
<tr>
<td>486</td>
<td>PCI</td>
<td>Buy any low-cost PCI card with at least 4MB of RAM.</td>
<td>Verify that card will work with 486; some require Pentium.</td>
</tr>
<tr>
<td>Pentium, K6</td>
<td>PCI</td>
<td>Buy PCI card with at least 8MB of RAM; look for DVD playback, TV out as desirable features.</td>
<td>Choose a card with a chipset that can be used as secondary video in case you move to AGP later by upgrading to a new motherboard or by moving the card to a system with AGP.</td>
</tr>
<tr>
<td>Pentium II/III/Celeron K6/Athlon Duron</td>
<td>AGP</td>
<td>Buy AGP card with 16MB or more RAM; should support AGP 2X or faster speed; look for DVD playback, TV out as desirable features; DVI option desirable for display upgrades.</td>
<td>AGP upgrade is available only on systems with AGP slot. Many low-cost systems have AGP video on motherboard only; must use PCI for upgrade (see previous table entry).</td>
</tr>
</tbody>
</table>

Table 10.18 lists motherboard chipsets that support AGP. Note that the use of this chipset doesn’t guarantee that every system using this chipset on its motherboard will be capable of accepting an AGP card because integrated AGP video is common on many low-cost systems today.
Table 10.18 AGP Support by Chipset

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Chipset</th>
<th>CPUs Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel</td>
<td>440LX, 440EX, 440ZX-66</td>
<td>Celeron</td>
</tr>
<tr>
<td></td>
<td>440BX, 440ZX</td>
<td>Pentium II, Pentium III, Celeron</td>
</tr>
<tr>
<td></td>
<td>820'</td>
<td>Pentium III, Pentium II</td>
</tr>
<tr>
<td>Ali</td>
<td>Aladdin Pro II</td>
<td>Pentium II</td>
</tr>
<tr>
<td></td>
<td>Aladdin V</td>
<td>Socket 7</td>
</tr>
<tr>
<td>Via</td>
<td>Apollo VP3</td>
<td>Socket 7</td>
</tr>
<tr>
<td></td>
<td>Apollo MVP3</td>
<td>Socket 7</td>
</tr>
<tr>
<td></td>
<td>Apollo Pro 133A'</td>
<td>Pentium II/III/Celeron</td>
</tr>
<tr>
<td></td>
<td>Apollo Pro 133</td>
<td>Pentium II/III/Celeron</td>
</tr>
<tr>
<td></td>
<td>Apollo Pro Plus</td>
<td>Pentium II/III/Celeron</td>
</tr>
<tr>
<td></td>
<td>Apollo KX133'</td>
<td>AMD Athlon</td>
</tr>
<tr>
<td>SiS</td>
<td>SiS5591/5595</td>
<td>Socket 7</td>
</tr>
<tr>
<td></td>
<td>SiS5600/5595</td>
<td>Pentium II</td>
</tr>
<tr>
<td></td>
<td>SiS600/5595</td>
<td>Pentium II</td>
</tr>
</tbody>
</table>

1. These chipsets support AGP version 2.0, which supports AGP 4x speed. Others listed support AGP version 1.0, which supports AGP 1x and 2x speeds.

RAMDAC

The speed of the RAMDAC (the digital-to-analog converter) is measured in MHz; the faster the conversion process, the higher the adapter's vertical refresh rate. Table 10.19 shows the effect of faster RAMDAC chips on typical video card chipsets. As RAMDAC speed increases, higher resolutions with higher vertical refresh rates are supported.

Table 10.19 Typical Chipset and RAMDAC Speed Pairings and Their Effects on Resolution and Refresh Rates

<table>
<thead>
<tr>
<th>Chipset</th>
<th>RAMDAC Speed</th>
<th>Maximum Resolution</th>
<th>Refresh Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrox G200</td>
<td>250MHz</td>
<td>1920×1200 (2-D)</td>
<td>70Hz (2D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1920×1080 (3-D)</td>
<td></td>
</tr>
<tr>
<td>Matrox G400MAX</td>
<td>360MHz</td>
<td>2048×1536 (2-D/3-D)</td>
<td>85Hz (2-D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75Hz (3-D)</td>
</tr>
</tbody>
</table>

Note

In some cases, the maximum resolutions and refresh rates listed for any video card might require a RAM upgrade or the purchase of a video card with more RAM.
Refresh Rates

The speed of the RAMDAC affects the vertical refresh rate. The refresh rate (also called the vertical scan frequency) is the rate at which the screen display is rewritten. This is measured in hertz (Hz). A refresh rate of 72Hz means that the screen is refreshed 72 times per second. A refresh rate that is too low causes the screen to flicker, contributing to eyestrain. A flicker-free refresh rate is a refresh rate high enough to prevent you from seeing any flicker; eliminating flicker reduces eyestrain. The flicker-free refresh rate varies with the resolution of your monitor setting (higher resolutions require a higher refresh rate) and must be matched by both your monitor and your display card.

Low-cost monitors often have refresh rates that are too low to achieve flicker-free performance for most users, and thus can lead to eyestrain.

Table 10.20 compares two typical 17-inch CRT monitors and a typical mid-range graphics card.

Although the Matrox Millennium G200 video card supports higher refresh rates than either monitor, rates higher than the monitor can support cannot be used safely because rates in excess of the monitor’s maximum refresh rate can damage the monitor.

Adjusting the Refresh Rate of the Video Card

The refresh rate of the video card can be adjusted in several ways:

- With older cards, a command-line program or separate Windows program was often provided.
- With recent and new cards, the standard display properties sheet offers a selection of refresh rates.

In any case, you need to know the allowable refresh rates for the monitor before you can make an appropriate selection. If your
Windows installation uses an unknown, Default Monitor, or Super VGA display type, rather than a particular brand and model of monitor, you will be prevented from selecting the higher, flicker-free refresh rates. Install the correct driver for your monitor model to get the highest refresh rates.

Comparing Video Cards with the Same Chipset

Many manufacturers create a line of video cards with the same chipset to sell at different pricing points. Why not save some dollars and get the cheapest model? Why not say “price is no object” and get the most expensive one? When you’re faced with various cards in the chipsetX family, look for differences such as those shown in Table 10.21.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Effect on You</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAMDAC speed</td>
<td>Less-expensive cards in a family often use a slower RAMDAC. Buy the card with the fastest RAMDAC, especially for use with 17-inch or larger monitors. Faster RAMDACs are often paired with SGRAM or DDR SRAM, which are the fastest types of RAM currently found on video cards.</td>
</tr>
<tr>
<td>Amount of RAM</td>
<td>Although AGP video cards can use AGP memory (a section of main memory borrowed for texturing), performing as much work as possible on the card’s own memory is still faster. PCI cards must perform all functions within their own memory. Less-expensive cards in a chipset family often have lower amounts of memory onboard, and most current model cards aren’t expandable. Buy a card with enough memory (8MB–16MB or more) for your games or applications—today and tomorrow.</td>
</tr>
<tr>
<td>Memory type</td>
<td>High-end video cards frequently use the new SGRAM (Synchronous Graphics RAM) or DDR SRAM (Double-Data-Rate Synchronous DRAM), with regular SDRAM as a popular choice for mid-range video cards. Choose DDR SRAM, SGRAM, and then SDRAM, in order of preference when possible.</td>
</tr>
<tr>
<td>Memory and core</td>
<td>Many suppliers adjust the recommended speed of graphics controllers in an effort to provide users with maximum performance. If you have questions about the rated speed of a controller, check the chip supplier’s Web site. Many reputable companies do use overclocked parts, but the best vendors supply large heat sinks or even powered fans to avoid overheating.</td>
</tr>
<tr>
<td>TV tuner</td>
<td>You can save some money by having it built in, but it’s not as important as the other issues listed earlier.</td>
</tr>
</tbody>
</table>

Setting Up Multiple Monitor Support in Windows 98/Me/2000

Windows 98 was the first version of Windows to include a video display feature that Macintosh systems have had for years: the capability to use multiple monitors on one system. Windows 98
and Windows Me support up to nine monitors (and video adapters), each of which can provide a different view of the desktop. You can display a separate program on each monitor, use different resolutions and color depths, and enjoy other features.

On a multi-monitor Windows 98 or Windows Me system, one display is always considered to be the primary display. The primary display can use any PCI or AGP VGA video adapter that uses a Windows 98 mini-driver with a linear frame buffer and a packed (non-planar) format, meaning that most of the brand-name adapters sold today are eligible. Additional monitors are called secondaries and are much more limited in their hardware support.

Video cards with the Permedia chipset (not the later Permedia NT and Permedia 2) can't be used in a multiple-monitor configuration.

The following list of video card chipsets with the specified Microsoft Windows 98 or Me drivers can be used in any combination of primary or secondary adapters. Unlisted chipsets also can work as primary adapters. This list is condensed from Microsoft's Knowledge Base article #Q182/7/08 (check it for updates):

- **ATI**—Mach 64 GX and beyond, including 3-D cards, Rage Pro series, Xpert series, and others using the ATIM64.drv or ATIR3.drv
- **S3**—765 (Trio64V+) S3MM.drv

Note

Only certain updates work. These are 40, 42, 43, 44, 52, 53, and 54. Note that if the card is at one of these updates, Windows 98 recognizes the card as a Trio 64V+, provided the Microsoft driver is used. If the card is not at one of these updates, it is recognized as a Trio 32/64. Some OEM drivers don't care which update is present; be sure to note carefully which Microsoft driver Windows 98 selects when you use this card.

Other S3 chipsets include the Trio64V2 and various Diamond, STB, Hercules, Number Nine, and other cards using the Virge or newer chipsets.

- **Cirrus**—5436, Alpine, 5446, and other cards using the CIRRUSMM.drv
- **Tseng**—Cards with the ET6000 chipset
- **Trident**—9685/9680/9682/9385/9382/9385 chipsets
Windows 2000 also provides multiple-monitor support, but with some differences from Windows 98/Me, as seen in Table 10.22.

<table>
<thead>
<tr>
<th>Windows Version</th>
<th>Number of Adapters/ Monitors Supported</th>
<th>How Compatible Cards Are Listed</th>
<th>Finding Compatible Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>98/Me</td>
<td>10</td>
<td>By chipset</td>
<td>On Microsoft's Web site</td>
</tr>
<tr>
<td>2000</td>
<td>9</td>
<td>Brand and model</td>
<td>HCL listing on CD-ROM</td>
</tr>
</tbody>
</table>

As of the initial release of Windows 2000, some of the major brands with products on the multiple-monitor approved list include:

- 3DFX
- 3Dlabs
- Creative Labs
- Diamond Multimedia
- ELSA
- Matrox
- Number Nine
- nVidia
- SIS 300 compatible
- STB

Windows 2000’s Hardware Compatibility List is organized by graphics card brand and model, rather than by chipset (check the Windows 2000 CD-ROM Hardware Compatibility List for details). This list is likely to change as Windows 2000 support becomes more widespread, but unfortunately the online version of the Windows 2000 HCL doesn’t provide an updated list of cards that support multiple-monitor configurations. You should check with your video card or chipset manufacturer for the latest information on Windows 2000 and multiple-monitor support issues.

Some video card manufacturers, including Appian and Matrox, make video cards that can support two or more monitors with a single card, avoiding the problems of using multiple cards for multiple-monitor support.

Useful third-party Web sites for multiple-monitor support include the following:

www.realtimesoft.com/multimon/

www.digitalroom.net/techpub/multimon.html
System Configuration Issues for Multiple-Monitor Support

If the BIOS on your computer does not let you select which device should be the primary VGA display, it decides based on the order of the PCI slots in the machine; AGP slots on most systems have a lower priority than PCI slots. You should, therefore, install the primary adapter in the highest-priority PCI slot. Because many systems do not list the slot priority in their documentation, you might need to experiment by switching the cards around between different PCI expansion slots.

After the hardware is in place, you can configure the display for each monitor from the Display Control Panel’s Settings page. The primary display is always fixed in the upper-left corner of the virtual desktop, but you can move the secondary displays to view any area of the desktop you want. You also can set the screen resolution and color depth for each display individually.

Video Card and Chipset Makers Model Reference

3-D Chipsets

As with standard 2-D video adapters, several manufacturers of popular 3-D video chipsets exist and many more manufacturers of video adapters that use them exist.

Note

See Chapter 15 of Upgrading and Repairing PCs, 12th Edition, for an exhaustive listing of current 3-D chipsets and the boards on which they are found.

Multimedia Devices

When choosing TV, video-out, or video capture options for your PC, use Table 10.23 to help you decide which solution is best for you.

<table>
<thead>
<tr>
<th>Table 10.23 Multimedia Device Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Type</td>
</tr>
<tr>
<td>Graphics card w/ built-in TV tuner</td>
</tr>
<tr>
<td>TV-tuner attachment</td>
</tr>
</tbody>
</table>
Table 10.23 Multimedia Device Comparison Continued

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel-port attachment</td>
<td>Universal use on desktop or notebook computer; inexpensive.</td>
<td>Frame rate limited by speed of port.</td>
</tr>
<tr>
<td>USB-port attachment</td>
<td>Easy installation on late-model, USB-equipped computers with Windows 98/Me/2000.</td>
<td>Might not work on Windows 95B OSR 2.x with USB; requires active USB port.</td>
</tr>
<tr>
<td>Dedicated ISA or PCI interface card</td>
<td>Fast frame rate for realistic video; doesn’t require disconnecting parallel printer; works with any graphics card.</td>
<td>High resource requirements (IRQ and so on) on some models; ISA nearly obsolete; requires internal installation.</td>
</tr>
<tr>
<td>IEEE-1394 (FireWire, iLINK) connection to digital video</td>
<td>No conversion from analog to digital needed; all-digital image is very high quality without compression artifacts (blocky areas) in video; fast throughput.</td>
<td>Requires IEEE-1394 interface card and IEEE-1394 digital video source; new and expensive; card requires internal installation.</td>
</tr>
</tbody>
</table>

Troubleshooting Video Capture Devices

Table 10.24 provides some advice for troubleshooting problems with video capture devices.

Table 10.24 Troubleshooting Video Capture Devices

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel-port attachment</td>
<td>Can’t detect device, but printers work okay.</td>
<td>Check port settings; device might require IEEE-1284 settings (EPP and ECP); change in BIOS; make sure device is connected directly to port; avoid daisy-chaining devices unless device specifically allows it; check Windows 9x Device Manager for IRQ conflicts.</td>
</tr>
<tr>
<td>TV tuners (built-in graphics card or add-on)</td>
<td>No picture.</td>
<td>Check cabling; set signal source correctly in software.</td>
</tr>
<tr>
<td>All devices</td>
<td>Video capture is jerky.</td>
<td>Frame rate is too low; increasing it might require capturing video in a smaller window; use fastest parallel-port setting you can.</td>
</tr>
<tr>
<td></td>
<td>Video playback has pauses, dropped frames.</td>
<td>Hard disk might be pausing for thermal recalibration; use AV-rated SCSI hard drives or new UDMA EIDE drives; install correct bus-mastering EIDE drivers for motherboard chipset to speed things up.</td>
</tr>
</tbody>
</table>
Table 10.24 Troubleshooting Video Capture Devices Continued

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB devices</td>
<td>Device can’t be detected or doesn’t work properly.</td>
<td>Use Windows 98 or above; late versions of Windows 95 have USB drivers, but they often don’t work; if you use a USB hub, make sure it’s powered.</td>
</tr>
<tr>
<td>Interface cards (all types)</td>
<td>Card can’t be detected or doesn’t work.</td>
<td>Check for IRQ conflicts in Windows Device Manager; consider setting card manually if possible.</td>
</tr>
<tr>
<td>All devices</td>
<td>Capture or installation problems.</td>
<td>Use the newest drivers available; check manufacturer’s Web site for updates, FAQs, and so on.</td>
</tr>
</tbody>
</table>

Testing a Monitor with Common Applications

Even without dedicated test and diagnostics software, you can use the software accessories (WordPad, Paint, and so on) that come with Microsoft Windows to test a monitor for picture quality.

One good series of tasks is as follows:

- Draw a perfect circle with a graphics program. If the displayed result is an oval, not a circle, this monitor will not serve you well with graphics or design software.

- Using a word processor, type some words in 8- or 10-point type (1 point equals 1/72 inch). If the words are fuzzy or if the black characters are fringed with color, select another monitor.

- Turn the brightness up and down while examining the corner of the screen’s image. If the image blooms or swells, it is likely to lose focus at high brightness levels.

- Display a screen with as much white space as possible and look for areas of color variance. This might indicate a problem only with that individual unit or its location, but if you see it on more than one monitor of the same make, it can be indicative of a manufacturing problem; or it could indicate problems with the signal coming from the graphics card. Move the monitor to another system equipped with a different graphics card model and retry this test to see for certain whether it’s the monitor or video card.

- Load Microsoft Windows to check for uniform focus. Are the corner icons as sharp as the rest of the screen? Are the lines in the title bar curved or wavy? Monitors usually are sharply focused at the center, but seriously blurred corners indicate a poor design. Bowed lines can be the result of a poor video
adapter, so don’t dismiss a monitor that shows those lines without using another adapter to double-check the effect.

- A good monitor will be calibrated so that rays of red, green, and blue light hit their targets (individual phosphor dots) precisely. If they don’t, you have bad convergence. This is apparent when edges of lines appear to illuminate with a specific color. If you have good convergence, the colors will be crisp, clear, and true, provided there isn’t a predominant tint in the phosphor.

- If the monitor has built-in diagnostics (a recommended feature), try them as well to test the display independent of the graphics card and system to which it’s attached.

Use Table 10.25 to troubleshoot specified problems.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Picture</td>
<td>LED indicates power-saving mode (flashing green or yellow by power switch).</td>
<td>Move the mouse or press Alt+Tab on the keyboard and wait up to one minute to wake up the system if the system is turned on. Check monitor and video data cables; replace with known, working spare. Turn off monitor; reset mode switch to correct setting (analog for VGA). Check brightness and contrast control; adjust as necessary.</td>
</tr>
<tr>
<td></td>
<td>LED indicates normal mode.</td>
<td></td>
</tr>
<tr>
<td>No picture; no power lights on monitor</td>
<td>No power flowing to monitor.</td>
<td>Cycle monitor off and on in case power management has kicked in; check power cable and replace; check surge protector and replace; replace monitor and retest.</td>
</tr>
<tr>
<td>Jittery picture quality</td>
<td>LCD monitors display not adjusted.</td>
<td>Use display-adjustment software to reduce or eliminate pixel jitter and pixel swim. Check cables for tightness at the video card and the monitor (if removable).</td>
</tr>
<tr>
<td></td>
<td>Cables loose.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Defective main or extender cable.</td>
<td>Remove the extender cable and retest with the monitor plugged directly into the video card; if the extended cable is bad, replace it; if the main cable is bad, replace it.</td>
</tr>
<tr>
<td></td>
<td>Jitter is intermittent.</td>
<td>Check for interference; microwave ovens near monitors can cause severe picture distortion when turned on.</td>
</tr>
</tbody>
</table>
Table 10.25 Troubleshooting Display Problems Continued

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRT monitor—wrong refresh rate.</td>
<td>Check settings; reduce refresh rate until acceptable picture quality is achieved. Use onscreen picture adjustments until an acceptable picture quality is achieved.</td>
<td>If the problem can be fixed by waiting or gently tapping the side of the monitor, the monitor power supply is probably bad or has loose connections internally; service or replace the monitor.</td>
</tr>
<tr>
<td>Intermittent—not due to external interference.</td>
<td></td>
<td>Picture in DOS, not Windows boot Windows 9x in Safe Mode; boot Windows 2000 in Enable VGA Mode. If these display modes work, delete current video card from Device Manager and restart system to reinstall drivers. If incorrect drivers are selected by Windows, manually choose correct drivers in Device Manager.</td>
</tr>
</tbody>
</table>

Audio I/O Connectors

Sound cards, or built-in audio chips, provide another significant part of modern PCs' multimedia capabilities. Learning the correct uses for the basic input/output connectors will help you as you set up typical sound-equipped computers. See Chapter 14 for examples of these connectors.

- **Stereo line out or audio out connector**—The line out connector is used to send sound signals from the audio adapter to a device outside the computer, such as stereo speakers, a headphone, or a stereo system. Some adapters provide two jacks for line out: one for the left channel and the other for the right channel.

- **Stereo line or audio in connector**—With the line in connector, you can record or mix sound signals from an external source, such as a stereo system or VCR, to the computer's hard disk.

- **Speaker/Headphone connector**—The speaker/headphone connector is provided on most audio adapters, but not necessarily all of them. Some systems use line out instead. When the adapter provides both a speaker/headphone and a line out connector, the speaker/headphone...
connector provides an amplified signal that can power your headphones or small bookshelf speakers. Most adapters can provide up to four watts of power to drive your speakers. The signals that the adapter sends through the line out connector are not amplified. The line out connector generally provides better sound reproduction because it relies on the external amplifier built into your stereo system or speakers, which is typically more powerful than the small amplifier on the audio adapter.

- **Microphone or mono in connector**—The mono in connector is used to connect a microphone for recording your voice or other sounds to disk. This microphone jack records in mono, not in stereo, and is therefore not suitable for high-quality music recordings. Many audio adapter cards use Automatic Gain Control (AGC) to improve recordings. This feature adjusts the recording levels on-the-fly. A 600-ohm to 10K-ohm dynamic or condenser microphone works best with this jack. Some inexpensive audio adapters use the line in connector instead of a separate microphone jack.

- **Joystick connector**—The joystick connector is a 15-pin, D-shaped connector that can connect to any standard joystick or game controller. Sometimes the joystick port can accommodate two joysticks if you purchase an optional Y-adapter.

- **MIDI connector**—Audio adapters typically use the same joystick port as their MIDI connector. Two of the pins in the connector are designed to carry signals to and from a MIDI device, such as an electronic keyboard. In most cases, you must purchase a separate MIDI connector from the audio adapter manufacturer that plugs into the joystick port and contains the two round, 5-pin DIN connectors used by MIDI devices, plus a connector for a joystick. Because their signals use separate pins, you can connect the joystick and a MIDI device at the same time. You need this connector only if you plan to connect your PC to external MIDI devices. You can still play the MIDI files found on many Web sites by using the audio adapter's internal synthesizer.

- **Internal pin-type connector**—Most audio adapters have an internal pin-type connector that you can use to plug an internal CD-ROM drive directly into the adapter, using a small, round cable. This connection enables you to channel audio signals from the CD-ROM directly to the audio adapter, so you can play the sound through the computer's speakers. This connector does not carry data from the CD-ROM to the system bus; it only provides the CD-ROM drive with direct audio access to the speakers. If your adapter lacks
this connector, you can still play CD audio through the computer speakers by connecting the CD-ROM drive's headphone jack to the audio adapter's line in jack with an external cable.

Tip
The line in, line out, and speaker connectors on an audio adapter all use the same 1/8-inch mini-jack socket. The three jacks are usually labeled, but when setting up a computer on or under a desk, these labels on the back of the PC can be difficult to read. One of the most common reasons a PC fails to produce any sound is that the speakers are plugged into the wrong socket.

If your sound card, microphone, and speakers aren't color-coded, do it yourself. See Chapter 1, “General Technical Reference,” for the PC99 standards for color-coding for audio and other ports.

Connectors for Advanced Features
Many of the newest sound cards are designed for advanced gaming, DVD audio playback, and sound production uses, and have additional connectors:

- **MIDI In/MIDI Out**—Some advanced sound cards don’t require you to convert the game port (joystick port) to MIDI interfacing by offering these ports on a separate external connector. This permits you to use a joystick and have an external MIDI device connected at the same time. Its typical location is in an external device.

- **SPDIF (also called SP/DIF) In and SPDIF Out**—The Sony/Philips Digital Interface Format connector receives digital audio signals directly from compatible devices without converting them to analog format first. Its typical location is in an external device. SPDIF interfaces are also referred to by some vendors as Dolby Digital interfaces.

- **CD SPDIF**—Connects compatible CD-ROM drives with SPDIF interfacing to the digital input of the sound card. Its typical location is on the side of the audio card.

- **TAD In**—Connects modems with Telephone Answering Device support to the sound card for sound processing of voice messages. Its typical location is on the side of the audio card.
• **Digital DIN Out**—This supports multi-speaker digital speaker systems. Its typical location is in an external device.

• **Aux In**—Provides input for other sound sources, such as a TV tuner card. Its typical location is on the side of the audio card.

• **I2S In**—This enables the sound card to accept digital audio input from an external source, such as 2-channel decoded AC-3 from DVD decoders and MPEG-2 Zoom Video. Its typical location is on the side of the audio card.

Sound Quality Standards

Many sound card owners never record anything, but if you like the idea of adding sound to a Web site or presentation, you should know the quality and file size impact that typical sound settings will have. The Windows 9x/2000/Me standard sound quality settings are shown in Table 10.26.

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Frequency</th>
<th>Bandwidth</th>
<th>File Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telephone quality</td>
<td>11,025Hz</td>
<td>8-bit mono</td>
<td>11KB/sec</td>
</tr>
<tr>
<td>Radio quality</td>
<td>22,050Hz</td>
<td>8-bit mono</td>
<td>22KB/sec</td>
</tr>
<tr>
<td>CD quality</td>
<td>44,100Hz</td>
<td>16-bit stereo</td>
<td>172KB/sec</td>
</tr>
</tbody>
</table>

Note that the higher the sound quality, the larger the file size. The file sizes are for .WAV files saved with the Windows Sound Recorder's default settings. If you want to add sound effects or speech to a Web site, you should get a program such as Real Networks's RealProducer, which is capable of compressing sound as much as 100:1 while still maintaining reasonable quality.

Many new sound cards also support a 48KHz standard designed to match the requirements of DVD audio playback and Dolby AC-3 audio compression technologies. This frequency must be set manually in Sound Recorder if you need to record at this high frequency level.

Configuring Sound Cards

Traditionally, sound cards have been one of the toughest single installation tasks because they use three of the four settings possible for an add-on card: IRQ, DMA, and I/O port addressing. The rule of thumb is: “The sound card first!”—no matter what else you need to install.
PCI Versus ISA Sound Cards
PCI cards have become the best choice recently for all types of upgrades, including sound cards. Compared to ISA cards, PCI cards are faster, have a lower CPU utilization rate, and use fewer hardware resources (see Table 10.27). Compare the configuration of the Sound Blaster 16 card with the native configuration for an Ensoniq-chipset PCI sound card.

<table>
<thead>
<tr>
<th>Card Onboard Device</th>
<th>IRQ</th>
<th>I/O (16 Bit)</th>
<th>DMA (8 Bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>5</td>
<td>220h-233h</td>
<td>5</td>
</tr>
<tr>
<td>MIDI Port</td>
<td>—</td>
<td>330h-331h</td>
<td>—</td>
</tr>
<tr>
<td>FM Synthesizer</td>
<td>—</td>
<td>388h-388h</td>
<td>—</td>
</tr>
<tr>
<td>Game Port</td>
<td>—</td>
<td>200h-207h</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 10.27 Default Resource Assignments for ISA and PCI Sound Card in Native and Emulation Modes

While the Ensoniq Audio PCI card uses only one IRQ and one I/O port address in its native mode, if you have software (mostly older Windows and DOS game/educational titles) that requires Sound Blaster Pro compatibility, the Legacy settings must also be used. However, if you are not running Sound Blaster–specific software (all your software is native Windows 9x, for example), you might be able to disable the Legacy mode for a PCI-based sound card.

Multifunction (Modem and Sound) Cards
Multifunction cards that use DSP (digital signal processor) technology, such as IBM Mwave-based cards, can be very difficult to install in today’s IRQ-starved systems. These cards typically combine a
modem plus a Sound Blaster–compatible sound card. They also typi-
cally require an IRQ and one or more I/O port address ranges for
the DSP as well as the normal settings seen previously and in
Chapter 6, “Serial Ports and Modems,” for the sound card and
modem functions.

These cards also might require a very complex software installation
process for the DSP, sound, modem, and soft wavetable sound sam-
ples. Because they are resource hungry, often have limited modem
speeds, and are usually ISA based, I recommend replacing these
types of multifunction cards with separate PCI-based sound and
modem cards if possible.

Troubleshooting Audio Hardware

Hardware (Resource) Conflicts

You might notice that your audio adapter doesn’t work (no sound
effects or music), repeats the same sounds over and over, or causes
your PC to freeze. This situation is called a device, or hardware, con-
lict centering around IRQ, DMA, and I/O port address settings in
your computer (see Chapter 2, “System Components and
Configuration”).

Detecting Resource Conflicts

Use Table 10.28 to help you determine resource conflicts caused by
your sound card.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Symptom</th>
<th>How to Detect</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound card using same IRQ as another device.</td>
<td>Skipping, jerky sound, or system lockups.</td>
<td>Use Windows Device Manager. For other systems, use IRQ and DMA card, as described in Chapter 2.</td>
<td>For PnP device: Disable automatic configuration for conflicting device and try to set card manually through direct alteration of settings or by choosing alternative configurations.</td>
</tr>
<tr>
<td>Sound card and another device using the same DMA channel.</td>
<td>No sound at all from sound card.</td>
<td>For non-PnP device: Move conflicting device to another setting to allow sound card to use defaults.</td>
<td></td>
</tr>
</tbody>
</table>
Table 10.28 Resolving Sound Card Resource Conflicts Continued

<table>
<thead>
<tr>
<th>Problem</th>
<th>Symptom</th>
<th>How to Detect</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI-slot sound card works okay with Windows, but not MS-DOS apps.</td>
<td>Windows software plays; DOS software doesn't play card; can't detect card.</td>
<td>Check for Legacy or SB settings in the Windows 9x Device Manager.</td>
<td>If no Legacy support is installed, install it. Follow instructions carefully for using the card with older software. You might need to run Setup program or TSR before starting DOS program. You might need software patch from game developer. In extreme cases, you might need to use an actual SB Pro/16 card alongside your PCI sound card and use it instead.</td>
</tr>
<tr>
<td>Some DOS and Windows software works, but some can't use card.</td>
<td>Error messages about incorrect card settings.</td>
<td>Check card or Legacy software settings; alternative settings work okay for some programs, but not others.</td>
<td>Software expects SB default settings; use settings in preceding table for Sound Blaster 16 (all but DMA 5 apply to SB Pro).</td>
</tr>
<tr>
<td>DSP-equipped card, such as IBM Mwave, not installed properly or out of resources.</td>
<td>Multifunction sound and modem card doesn't work.</td>
<td>Check Windows 9x Device Manager for DSP host configuration.</td>
<td>Mwave and similar cards require basic SB settings as in previous entry, plus serial (COM) port setting resources for the DSP! Reinstall card with all drivers.</td>
</tr>
<tr>
<td>PnP card on a non-PnP system was working, but has now stopped in these files.</td>
<td>PnP enumerator program in startup process probably removed or damaged.</td>
<td>Check CONFIG.SYS or AUTOEXEC.BAT for driver; use REM to create labels before and after driver commands.</td>
<td>Reinstall software and test; upgrade BIOS to PnP mode if possible.</td>
</tr>
</tbody>
</table>

Most Common Causes of Hardware Conflicts with Sound Card

The most common causes of system resource conflicts are the following:

- SCSI host adapters
- Network interface cards
• Bus mouse adapter cards
• Serial port adapter cards for COM3 or COM4
• Parallel port adapter cards for LPT2
• Internal modems
• Scanner interface cards

All these cards use IRQ, DMA, and I/O port addresses, which in some cases can overlap with default or alternative sound card settings.

Freeing Up IRQ 5 for Sound Card Use While Still Printing

If you are using an LPT2 port card for a slow-speed device, such as a dot-matrix or low-end inkjet printer, you can often free up its default IRQ 5 by disabling EPP/ECP/IEEE-1284 modes. These modes require use of an IRQ (ECP also uses a DMA channel). Reverting to standard printing will cause most LPT ports to use only I/O port addresses. This will enable you to use the port for printing and its IRQ 5 for a sound card.

Other Sound Card Problems

Like the common cold, audio adapter problems have common symptoms. Table 10.29 will help you diagnose sound card problems.

<table>
<thead>
<tr>
<th>Table 10.29 Diagnosing Sound Card Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom</td>
</tr>
<tr>
<td>No sound.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 10.29 Diagnosing Sound Card Problems Continued

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono Sound.</td>
<td>Mono plug in stereo jack.</td>
<td>Use stereo speaker jack.</td>
</tr>
<tr>
<td></td>
<td>Incorrectly wired speakers.</td>
<td>Check color coding.</td>
</tr>
<tr>
<td></td>
<td>Audio card in left-channel mono fail-safe mode because of driver problem.</td>
<td>Reload drivers and test stereo sound.</td>
</tr>
<tr>
<td></td>
<td>Speakers with independent volume controls might be set differently.</td>
<td>Adjust volume to match on both.</td>
</tr>
<tr>
<td>Low volume.</td>
<td>Speakers plugged into headphone jack.</td>
<td>Use higher powered speaker jack if separate jacks are provided.</td>
</tr>
<tr>
<td></td>
<td>Mixer settings too low.</td>
<td>Boost volume in mixer.</td>
</tr>
<tr>
<td></td>
<td>Hardware volume control (thumbwheel) on sound card turned too low.</td>
<td>Adjust volume on card.</td>
</tr>
<tr>
<td></td>
<td>Speakers not powered or require more power.</td>
<td>Power speakers, add amplifier, or replace speakers.</td>
</tr>
<tr>
<td>Scratchy sound.</td>
<td>Audio card picking up interference from other cards.</td>
<td>Move away from other cards.</td>
</tr>
<tr>
<td></td>
<td>ISA sound card might be dropping signals during hard disk access.</td>
<td>Normal problem due to high CPU utilization of ISA card; use PCI sound card instead.</td>
</tr>
<tr>
<td></td>
<td>Interference from monitor causing interference.</td>
<td>Move speakers farther away. Put subwoofers on the floor to maximize low-frequency transmission and to keep their big magnets away from the monitor.</td>
</tr>
<tr>
<td></td>
<td>Poor quality FM-synthesis music from sound card.</td>
<td>Change to wavetable sound card; check wavetable settings.</td>
</tr>
<tr>
<td>Computer won't start after card installation.</td>
<td>Card not seated tightly in expansion slot.</td>
<td>Remove card, reinsert, and restart PC.</td>
</tr>
<tr>
<td>IOS Error displayed during Windows 95 startup; system locked up.</td>
<td>Sound card software clashes with Windows Input/Output System (IOS).</td>
<td>Check with sound card vendor for an IOS fix program; might be supplied on install disk; start Windows 9x in Safe mode to locate and install.</td>
</tr>
<tr>
<td>Joystick doesn't work.</td>
<td>Duplicate joystick ports on sound card and another card causing I/O port address conflict.</td>
<td>Disable sound card joystick port.</td>
</tr>
<tr>
<td></td>
<td>Computer too fast for inexpensive joystick port.</td>
<td>Buy high-speed joystick port; disable port on sound card; install replacement joystick port card.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slow down computer with de-turbo button or BIOS routine.</td>
</tr>
<tr>
<td>Symptom</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Can't play DVD audio or MP3 files, or use SPDIF connections.</td>
<td>Hardware resource not enabled on sound card.</td>
<td>Enable hardware resource.</td>
</tr>
<tr>
<td></td>
<td>Wrong playback program for media type.</td>
<td>Use correct playback program.</td>
</tr>
<tr>
<td></td>
<td>Volume set too low in sound card mixer program.</td>
<td>Adjust volume for correct playback device in sound mixer program; check volume and power to speakers.</td>
</tr>
<tr>
<td></td>
<td>Cabling incorrect.</td>
<td>Adjust cabling.</td>
</tr>
</tbody>
</table>
Client/Server Versus Peer-to-Peer Networking

Table 11.1 compares the features of client/server networking (such as with Novell NetWare, Windows NT Server, and Windows 2000) with peer-to-peer networking (such as with Windows for Workgroups, Windows 9x, Windows Me, and Windows NT Workstation). This table will help you decide which type of network is appropriate for your situation.

<table>
<thead>
<tr>
<th>Item</th>
<th>Client/Server</th>
<th>Peer-to-Peer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access control</td>
<td>Via user/group lists of permissions; single password provides user access to only the resources on his/her list; users can be given several different levels of access.</td>
<td>Via password lists by resource; each resource requires a separate password; all-or-nothing access; no centralized user list.</td>
</tr>
<tr>
<td>Security</td>
<td>High, because access is controlled by user or by group identity.</td>
<td>Low, because knowing the password gives anybody access to a shared resource.</td>
</tr>
<tr>
<td>Performance</td>
<td>High, because of specialized design of server, high-performance nature of hardware, redundancy features.</td>
<td>Low, because servers often act as workstations.</td>
</tr>
<tr>
<td>Hardware cost</td>
<td>License fees per workstation are part of the cost of the Network Operating System server software (Windows NT and Windows 2000 Server, Novell NetWare).</td>
<td>Low, because any workstation can become a server by sharing resources.</td>
</tr>
<tr>
<td>Software cost</td>
<td>Free; all client software is included with any release of Windows 9x, Windows NT Workstation, Windows 2000 Professional, or Windows Me.</td>
<td></td>
</tr>
</tbody>
</table>
If you choose any form of Ethernet network hardware for your peer-to-peer network, you can upgrade to a client/server network later by adding a server with the appropriate network operating system. Your existing network cards, cables, and other hardware can still be used with the new server.

Choosing Network Hardware and Software

In this section, you’ll receive a detailed checklist of the hardware and software you need to build your network. Although many options are available on the market for network hardware, this discussion assumes that you will be choosing Fast Ethernet hardware that can also work with standard Ethernet networks (“dual-speed” 10/100 cards and hubs). This is the most popular and cost-effective network currently available.

First, start with the number of computers you plan to network together. You need the items discussed in the following section to set up your network.

NIC

One network interface card (NIC) is required for every computer on the network. To simplify technical support, buy the same model of NIC for each computer in a peer-to-peer workgroup network. Today, the best price-performance combination is Fast Ethernet (100BASE-TX) NICs. You should choose dual-speed (10/100) versions of these cards to enable interconnection with standard 10Mbps Ethernet networks.

You should record the brand name and model number of the NIC(s) you are using, as well as the driver version or source. Use Table 11.2 as a guide.

Table 11.2 Comparing Client/Server and Peer-to-Peer Networking

<table>
<thead>
<tr>
<th>Item</th>
<th>Client/Server</th>
<th>Peer-to-Peer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backup</td>
<td>Centralized when data is stored on server; allows use of high-speed, high-capacity tape backups with advanced cataloging.</td>
<td>Left to user decision; usually mixture of backup devices and practices at each workstation.</td>
</tr>
<tr>
<td>Redundancy</td>
<td>Duplicate power supplies, hot-swappable drive arrays, and even redundant servers are common; network OS normally capable of using redundant devices automatically.</td>
<td>No true redundancy among either peer “servers” or clients; failures require manual intervention to correct with high possibility of data loss.</td>
</tr>
</tbody>
</table>
Table 11.2 NIC Location and Information Worksheet

<table>
<thead>
<tr>
<th>NIC Location and Computer ID</th>
<th>Brand Name</th>
<th>Model #</th>
<th>Cable Type(s)</th>
<th>Speed</th>
<th>Driver Source or Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UTP Cable

Each NIC must be connected by a cable long enough to reach comfortably between the NIC and the hub, which connects multiple computers. Use Table 11.3 as a guide for recording necessary information regarding your cabling. Your cabling should be Category 5 or better.

Table 11.3 UTP Cable Worksheet

<table>
<thead>
<tr>
<th>Computer ID</th>
<th>Cable Length</th>
<th>Wiring Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You need only one hub for the typical workgroup network.

Hub

Buy a hub of the correct speed with at least enough RJ-45 ports for each computer on the network; for expansion, buy a hub with a couple of empty ports. Use the worksheet shown in Table 11.4 as a guide for recording information about your hub or hubs. Dual-speed 10/100 Ethernet/Fast Ethernet hubs will enable you to connect with existing standard Ethernet networks.

Table 11.4 Hub Worksheet

<table>
<thead>
<tr>
<th>Hub #</th>
<th>Brand</th>
<th>Model#</th>
<th># of Ports</th>
<th>Uplink?</th>
<th>Speed(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Software

Start by using the built-in networking software supplied with your version of Windows. Any recent version of Windows contains network client and simple peer-server software. Your workgroup network can contain any combination of the following:

- Windows for Workgroups 3.11
- Windows 95
- Windows 98
Windows 2000 Professional
Windows NT 4.0 Workstation
Windows Me

Table 11.5 shows the basic configuration you’ll need to complete for any client (accessing services on another PC) and server (sharing services with other PCs) using these versions of Windows.

<table>
<thead>
<tr>
<th>Item</th>
<th>Client</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows network client</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>NetBEUI protocol</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>File and print sharing for Microsoft Networks</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>NIC installed and bound to previous protocols and services</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Workgroup identification (same for all PCs in workgroup)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Computer name (each PC needs a unique name)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Any system that will be used as both a client and a server must have the components from both columns installed.

Depending on how you plan to use the computer, one or both of the following might also need to be installed:

- If the computer is going to access a Novell NetWare client/server network, the IPX/SPX protocol must also be installed and configured.
- If the computer is going to be used to access the Internet or any other TCP/IP-based network, the TCP/IP protocol must also be installed.

Note that Windows 2000 and Windows Me do not install the NetBEUI protocol by default. You must specify it when you set up the network features of either version of Windows if you want to use Direct Cable Connection or create a simple workgroup network. Windows 2000 and Windows Me use TCP/IP as their default network protocol.

Use the Network icon in the Windows Control Panel to choose your network settings. You’ll need the following software to set up the network:

- Operating system CDs, disks, or hard-disk image files
- NIC drivers
Network Protocols
The second most important choice you must make when you create your network is which network protocol you will use. The network protocol affects with which types of computers your network can connect.

The three major network protocols are TCP/IP, IPX/SPX, and NetBEUI. Unlike data-link protocols, though, network protocols are not tied to particular hardware (NIC or cable) choices. Network protocols are software and can be installed or removed to any computer on the network at any time as necessary.

Table 11.6 summarizes the differences between these protocols.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Included in Protocol Suite</th>
<th>Best Used for</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>TCP/IP</td>
<td>Internet and large networks</td>
<td>Also used for dial-up Internet access; native protocol suite of Windows 2000, Windows Me, and Novell NetWare 5.x</td>
</tr>
<tr>
<td>IPX</td>
<td>IPX/SPX</td>
<td>Networks with Novell 4.x and earlier servers</td>
<td>Used by NetWare 5.x for certain special features only</td>
</tr>
<tr>
<td>NetBEUI</td>
<td>N/A</td>
<td>Windows 9x, Me, 2000, or Windows for Workgroups peer networks</td>
<td>Can’t be routed between networks; simplest network protocol; also used with Direct Cable Connection NIC-less “networking”</td>
</tr>
</tbody>
</table>

All the computers on any given network must use the same network protocol or protocol suite to communicate with each other.

IP and TCP/IP

IP stands for Internet Protocol; it is the network layer of the collection of protocols (or protocol suite) developed for use on the Internet and commonly known as TCP/IP (Transmission Control Protocol/Internet Protocol).

Later, the TCP/IP protocols were adopted by the UNIX operating systems, and they have now become the most commonly used protocol suite on PC LANs. Virtually every operating system with networking capabilities supports TCP/IP, and it is well on its way to displacing all the other competing protocols. Novell NetWare 5 and Windows 2000 both use TCP/IP as their native protocol for most services.
Selecting a Network Data-Link Protocol (Specification)

Regardless of the type of network (client/server or peer-to-peer) you select, you can choose from a wide variety of network data-link protocols, also known as specifications. The most common ones in use for PCs are listed here. Use Table 11.7 to understand the requirements, limitations, and performance characteristics of the major types of network data-link protocols.

<table>
<thead>
<tr>
<th>Network Type</th>
<th>Speed</th>
<th>Max Number of Stations</th>
<th>Cable Types</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCnet</td>
<td>2.5Mbps</td>
<td>255 stations</td>
<td>RG-62 coax; UTP/Type 1 STP²</td>
<td>Obsolete for new installations; was used to replace IBM 3270 terminals (which used the same coax cable).</td>
</tr>
<tr>
<td>Home PNA 1.0</td>
<td>1Mbps</td>
<td>N/A</td>
<td>RJ-11 phone cable</td>
<td>Easy home-based networking via parallel-port connections or internal ISA, PCI, or PC Card NICs or USB port; replaced by Home PNA 2.0.</td>
</tr>
<tr>
<td>Home PNA 2.0</td>
<td>10Mbps</td>
<td>N/A</td>
<td>RJ-11 phone cable</td>
<td>Easy, faster home-based networking via PCI or PC Card NICs or USB port.</td>
</tr>
<tr>
<td>Ethernet</td>
<td>10Mbps</td>
<td>Per segment:</td>
<td>UTP; Cat 3 (10BASE-T), Thicknet (coax; 10BASE-5), Thinnet (RG-58 coax; 10BASE-2), Fiber optic (10BASE-F)</td>
<td>Being replaced by Fast Ethernet; can be interconnected with Fast Ethernet by use of dual-speed hubs and switches; use switches and routers to overcome "5-4-3" rule in building very large networks.</td>
</tr>
<tr>
<td>Fast Ethernet</td>
<td>100Mbps</td>
<td>Per segment:</td>
<td>Cat 5 UTP³</td>
<td>Fast Ethernet can be interconnected with standard Ethernet through use of dual-speed hubs, switches, and routers.</td>
</tr>
</tbody>
</table>
Table 11.7 Network Data-Link Protocols Summary Continued

<table>
<thead>
<tr>
<th>Network Type</th>
<th>Speed</th>
<th>Max Number of Stations</th>
<th>Cable Types</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigabit Ethernet</td>
<td>1000Mbps</td>
<td>Per segment:</td>
<td>2 Cat 5 UTP</td>
<td>Gigabit Ethernet can be interconnected with Fast and/or standard Ethernet through use of dual-speed hubs, switches and routers.</td>
</tr>
<tr>
<td>Token Ring</td>
<td>4Mbps or 16Mbps</td>
<td>72 on UTP(^1) 250-260 on type 1 STP(^2)</td>
<td>UTP(^1), Type 1 STP(^2), and Fiber optic</td>
<td>High price for NIC(^3) and MAU(^+) to interconnect clients; primarily used with IBM mid-size and mainframe systems.</td>
</tr>
</tbody>
</table>

1. UTP = Unshielded Twisted Pair
2. STP = Shielded Twisted Pair
3. NIC = Network Interface Card
4. MAU = Multiple Access Unit

Network Cable Connectors

Several types of network cable connectors are available. Table 11.8 summarizes these and indicates which ones are in current use.

Table 11.8 Network Cable Connectors

<table>
<thead>
<tr>
<th>Connector Type</th>
<th>Used By</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB-15</td>
<td>Thick Ethernet</td>
<td>Used a “vampire tap” cable from the connector to attach to the main cable; obsolete.</td>
</tr>
<tr>
<td>DB-9</td>
<td>Token Ring</td>
<td>Obsolete.</td>
</tr>
<tr>
<td>BNC</td>
<td>RG-62 ARCnet (obsolete), RG-58 Thin Ethernet</td>
<td>Thin Ethernet uses T-connector to enable pass-through to another station or a terminating resistor to indicate end of network segment. Obsolete in most installations; BNC still used in small networks or to connect hubs.</td>
</tr>
<tr>
<td>RJ-45</td>
<td>Newer Token-Ring, 10BASE-T Ethernet, Fast Ethernet, Gigabit Ethernet</td>
<td>Twisted-pair cabling overwhelming favorite for most installations.</td>
</tr>
</tbody>
</table>

While virtually all newly installed networks today with conventional cables use twisted-pair cabling, many networks are mixtures of twisted-pair and older cabling types. Token-Ring Network Interface cards and Ethernet cards with all three of the popular
Ethernet connector types remain in wide use. When a network interface card has more than one connector type, you might need to use the card’s setup program to select which connector to use.

Wire Pairing for Twisted-Pair Cabling

For large, multi-office installations, network cables are usually built from bulk cable stock and connectors. Because the twisted-pair cabling has eight wires, many pairings are possible. If you are adding cable to an existing installation, you should match the wire pairings already in use. However, the most popular wiring standard is the AT&T 258A standard detailed in Table 11.9. You can buy pre-built cabling that matches this standard or build your own.

<table>
<thead>
<tr>
<th>Table 11.9</th>
<th>RJ-45 Connector Wire Pairing and Placement AT&T 258A Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire Pairing</td>
<td>Wire Connected to Pin #</td>
</tr>
<tr>
<td>White/blue and blue</td>
<td>White/blue - #5 Blue - #4</td>
</tr>
<tr>
<td>White/orange and orange</td>
<td>White/orange - #1 Orange - #2</td>
</tr>
<tr>
<td>White/green and green</td>
<td>White/green - #3 Green - #6</td>
</tr>
<tr>
<td>White/brown - brown</td>
<td>White/brown - #7 Brown - #8</td>
</tr>
</tbody>
</table>

1. This pair is not used with 10BASE-T or Fast Ethernet 100BASE-TX, but all four pairs are used with Fast Ethernet 100BASE-T4 and with Gigabit Ethernet 1000BASE-TX standards.

Thus, a completed cable that follows the AT&T 268A (also called the EIA/TIA 568B) standard should look similar to the following when viewed from the flat side of the RJ-45 connector (from left to right): orange/white, orange, green/white, blue, blue/white, green, brown/white, brown.

Making Your Own UTP Cables

You will need the following tools and supplies to build your own Ethernet cables:

- UTP cable (Category 5 or better)
- RJ-45 connectors
- Wire stripper
- RJ-45 crimping tool
You can buy all the previous tools for a single price from many different network-products vendors. If you are working with a network with a wiring closet, you will also want to add a punchdown tool to your kit.

Before you create a “real” cable of any length, follow these procedures and practice on a short length of cable. RJ-45 connectors and bulk cable are cheap; network failures are not.

Follow these steps for creating your own twisted-pair cables:

1. Determine how long your UTP cable should be. You’ll want to allow adequate slack for moving the computer and for avoiding strong interference sources. Keep the maximum distances for TP cables (listed later in this chapter) in mind.

2. Roll out the appropriate length of cable.

3. Cut the cable cleanly from the box of wire.

4. Use the wire stripper to strip the insulation jacket off the cable to expose the TP wires; you’ll need to rotate the wire about 1 1/4 turns to strip away all of the jacket. If you turn it too far, you’ll damage the wires inside the cable.

 Caution

 Don’t strip the UTP wires themselves; just the jacket!

5. Check the outer jacket and inner TP wires for nicks; adjust the stripper tool and repeat steps 3 and 4 if you see damage.

6. Arrange the wires according to the AT&T 268B/EIA 568B standard listed previously.

7. Trim the wire edges so the eight wires are even with one another and are slightly less than 1/2” past the end of the jacket. If the wires are too long, crosstalk (wire-to-wire interference) can result; if the wires are too short, they can’t make a good connection with the RJ-45 plug.

8. With the clip side of the RJ-45 plug facing away from you, push the cable into place. Verify that the wires are arranged according to the EIA/TIA 568B standard before you crimp the plug on to the wires. Adjust the connection as necessary.

9. Use the crimping tool to squeeze the RJ-45 plug on to the cable. The end of the cable should be tight enough to resist being removed by hand.
10. Repeat steps 4—9 for the other end of the cable. Recut the end of the cable if necessary before stripping it.

11. Label each cable with the following information:
 - Wiring standard
 - Length
 - End with crossover (if any)
 - _______ (blank) for computer ID

Note

The cables should be labeled at both ends to make matching the cable with the correct computer easy and to facilitate troubleshooting at the hub. Check with your cable supplier for suitable labeling stock or tags you can attach to each cable.

Network Cabling Distance Limitations

Network distance limitations must be kept in mind when creating a network. If you find that some users will be “out of bounds” because of these limitations, you can use repeaters, routers, or switches to reach distant users.

Table 11.10 lists the distance limitations of various kinds of LAN cable.

In addition to the limitations shown in the table, keep in mind that you cannot connect more than 30 computers on a single Thinnet Ethernet segment, more than 100 computers on a Thicknet Ethernet segment, more than 72 computers on a UTP Token-Ring cable, and more than 260 computers on an STP Token-Ring cable.

<table>
<thead>
<tr>
<th>Table 11.10</th>
<th>Network Distance Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Adapter</td>
<td>Cable Type</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Thin(^1)</td>
</tr>
<tr>
<td></td>
<td>Thick (drop cable)(^1)</td>
</tr>
<tr>
<td></td>
<td>Thick (backbone)(^1)</td>
</tr>
<tr>
<td></td>
<td>UTP</td>
</tr>
</tbody>
</table>
Table 11.10 Network Distance Limitations Continued

<table>
<thead>
<tr>
<th>Network Adapter</th>
<th>Cable Type</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Token Ring</td>
<td>STP</td>
<td>328 ft.</td>
<td>8 ft.</td>
</tr>
<tr>
<td></td>
<td>UTP</td>
<td>148 ft.</td>
<td>8 ft.</td>
</tr>
<tr>
<td>ARCnet<sup>1</sup> (passive hub)</td>
<td></td>
<td>393 ft.</td>
<td>Depends on cable</td>
</tr>
<tr>
<td>ARCnet<sup>1</sup> (active hub)</td>
<td></td>
<td>1,988 ft.</td>
<td>Depends on cable</td>
</tr>
</tbody>
</table>

¹ Indicates obsolete for new installations; may be found in existing installations.

Cabling Standards for Fast Ethernet

Thanks to low costs for cabling, network interface cards, and now hubs, Fast Ethernet networks can be built today at a cost comparable to conventional Ethernet networks. Note that the distance limitations given for 100BASE-TX (the most common type) are the same as for 10BASE-T. Consider using 100BASE-FX fiber-optic cable with media converters for longer runs.

Table 11.11 lists the cabling standards for Fast Ethernet.

Table 11.11 100BASE-T Cabling Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Cable Type</th>
<th>Segment Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>100BASE-TX</td>
<td>Category 5 (2 pairs)</td>
<td>100 meters</td>
</tr>
<tr>
<td>100BASE-T4</td>
<td>Category 3, 4, or 5 (4 pairs)</td>
<td>100 meters</td>
</tr>
<tr>
<td>100BASE-FX</td>
<td>62.5/125<sup>1</sup> multimode 400 meters (2 strands)</td>
<td></td>
</tr>
</tbody>
</table>

¹ First figure is core diameter; second figure is cladding diameter; both in micrometers

Properly constructed Fast Ethernet 100BASE-TX Category 5 cable can be certified for Gigabit Ethernet operation. Gigabit Ethernet uses all four wire pairs.

Specialized Network Options

The following sections cover specialized networks you might encounter, including the Home PNA networking and wireless networking standards.

What About Home Networking?

So-called SOHO (small-office/home-office) users want networks for Internet connection sharing, printer sharing, and file transfer. To avoid the cabling problems and protocol configuration and setup issues of traditional Ethernet networks, the Home Phoneline Network Association (HomePNA) established the HomePNA 1.0 and faster 2.0 standards for using existing phone wiring for networking.
The advantages include

- Easy setup for technical novices because of the integrated nature of the hardware and software
- Choice of internal (card-based) or external (parallel port or USB-based) solutions
- No rewiring needed; uses the phone lines in the home or home office

The disadvantages include

- Difficult to have a portable computer set up to use both HomePNA and standard Ethernet-based networking; special dual-purpose devices are required
- Low speed: HomePNA 2.0 is still just 10Mbps
- Can't turn HomePNA-based network into a client/server network later

Wireless Networking Standards

Wireless networking, once considered a narrow “niche” technology hampered by a lack of standards, is now becoming a major network type.

Star-Topology Wireless Networks

The following networks use a star topology: Wireless NICs send signals to an access point, which relays the signal to the receiving computer. By using multiple access points in a building or campus environment, users can stay connected as they move from room to room or building to building. The NICs automatically switch to the strongest signal from an access point; thus, this type of wireless network is similar in concept to cellular phone networks. The networks are as follows:

- **IEEE 802.11b**—The leading industry standard is IEEE 802.11b, a wireless Ethernet standard designed to interconnect easily with standard Ethernet 10BASE-T networks. It runs at 11Mbps and uses the same 2.4GHz wavelength used by cellular phones and other communications devices. IEEE 802.11b is supported by a number of leading network hardware vendors, and products from different vendors can be mixed and matched just as conventional “wired” Ethernet products can be.

- **RadioLAN Wireless MobilLINK**—The proprietary RadioLAN Wireless MobilLINK runs at 5.8GHz for faster performance. It can’t connect directly to IEEE 802.11b devices, but can be connected to standard 10BASE-T Ethernet networks.
Point-to-Point Wireless Networks

Each wireless client sends its signal directly to the receiving client. This is much slower, but also much simpler and less expensive than star-topology wireless LANs. The following standards use a point-to-point topology:

- **HomeRF**—HomeRF is a home-oriented network standard that runs at just 1.6Mbps currently, but future versions will run at 10Mbps. It also can be connected to standard Ethernet networks by means of a wireless bridge. HomeRF products running at 1.6Mbps are available now.

- **Bluetooth**—Bluetooth is a very short-range, slow-speed (400Kbps) standard primarily designed for data interchange between appliance devices, such as pagers, PDAs, and wireless phones, as well as notebook computers. Bluetooth-enabled devices should become available in late 2000.

Both HomeRF and Bluetooth use the same 2.4GHz frequency as IEEE 802.11b, so interference between these types of networks is possible.

Table 11.12 provides an overview of the various wireless network standards currently in use.

<table>
<thead>
<tr>
<th>Network</th>
<th>Rated Speed</th>
<th>Logical Topology</th>
<th>Connects with 10BASE-T Ethernet via</th>
<th>Maximum Number of PCs per Access Point</th>
<th>Average Cost per User²</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.11b</td>
<td>11Mbps</td>
<td>Logical Star (requires access point)</td>
<td>Access point</td>
<td>Varies by brand and model, up to 2048</td>
<td>$525²²²</td>
</tr>
<tr>
<td>RadioLAN</td>
<td>10Mbps¹</td>
<td>Logical Star (requires access point)</td>
<td>Wireless BackboneLINK (access point)</td>
<td>128</td>
<td>$600²</td>
</tr>
<tr>
<td>HomeRF⁴</td>
<td>1.6Mbps</td>
<td>Point-to-Point</td>
<td>Symphony Cordless Ethernet Bridge</td>
<td>10</td>
<td>$139</td>
</tr>
</tbody>
</table>

1. Average price of products from Cisco, Lucent, and 3Com as of 2000.
2. Price includes access point (required).
3. Actual throughput of RadioLAN compared to average of IEEE 802.11b products is about 25% faster due to higher radio frequency used.
4. Figures for Proxim Symphony, first HomeRF product available.
5. Average cost per user based on a four-station network with two PCI desktop and two notebook PCs and one access point (if needed).
Wireless Network Configuration and Selection Issues

Wireless NICs require an IRQ and I/O port address range, just as conventional NICs do. Other configuration and product selection issues include the following:

- **NIC Card Type**—With most wireless networks, you can choose PCI-based NICs for desktop computers and PC Card-based NICs for notebook computers. Although the speed of current wireless networks also permits the use of ISA cards, you should avoid these because this 16-bit card design is obsolete.

- **Network Security and Encryption**—For maximum security, select wireless network products that support either of these features:
 - A seven-digit security code called an ESSID; wireless devices without this code can’t access the network
 - A list of authorized MAC numbers (each NIC has a unique MAC); a wireless device not on the MAC list can’t access the network

These features must be enabled to be effective. Also, use the strongest data encryption your network supports. Many of the early versions of IEEE 802.11b network devices supported only the “weak” 40-bit encryption when introduced, but installable updates to “strong” 128-bit encryption should be available later. You should switch to strong encryption as soon as possible to provide another layer of network security.

TCP/IP Network Protocol Settings

TCP/IP is taking over the computing world, replacing the hodgepodge of competing protocols used earlier in networking (NetBIOS, NetBEUI, and IPX/SPX). TCP/IP is the standard protocol of the World Wide Web, as well as of the latest network operating systems from Novell (NetWare 5) and Microsoft (Windows 2000). Even though it’s used by both dial-up (modem) users and LAN workstations, the typical configurations in these situations have virtually nothing in common. Use Table 11.13 as a guide to what must be set, and remember to record the settings your TCP/IP connections use.
Table 11.13 TCP/IP Properties by Connection Type—Overview

<table>
<thead>
<tr>
<th>TCP/IP Property Tab</th>
<th>Setting</th>
<th>Modem Access ("Dial-Up Adapter")</th>
<th>LAN Access ("XYZ Network Card")</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>IP Address</td>
<td>Automatically assigned by ISP</td>
<td>Specified (get value from network administrator)</td>
</tr>
<tr>
<td>WINS1 Configuration</td>
<td>Enable/Disable WINS Resolution</td>
<td>Disabled</td>
<td>Indicate server or enable DHCP2 to allow NetBIOS over TCP/IP</td>
</tr>
<tr>
<td>Gateway</td>
<td>Add Gateway/ List of Gateways</td>
<td>None (PPP is used to connect modem to Internet)</td>
<td>IP address of to Gateway used connect LAN to Internet</td>
</tr>
<tr>
<td>DNS3 Configuration</td>
<td>Enable/Disable Host Domain</td>
<td>Usually disabled, unless proxy server used by ISP</td>
<td>Enabled, with host and domain specified (get value from network administrator)</td>
</tr>
</tbody>
</table>

1. WINS = Windows Internet Naming Service; used on NT servers to automatically manage the association of workstation names and locations to IP addresses; used with DHCP (see note 2)
2. DHCP = Domain Host Configuration Protocol; sets up IP addresses for PCs connected to an NT network
3. DNS = Domain Name System; matches IP addresses to Web site names through the use of name servers

TCP/IP Protocol Worksheet

Use the worksheet shown in Table 11.14 to track TCP/IP settings for either network card or dial-up connections. The settings are based on the Networks icon in Windows 9x. The first worksheet is blank; the second worksheet lists typical (fictitious) settings for a workstation on a LAN.

Table 11.14 TCP/IP Protocol Settings Worksheet

<table>
<thead>
<tr>
<th>IP Address</th>
<th>TCP/IP Protocol Settings Worksheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Subnet</td>
</tr>
<tr>
<td>WINS Configuration</td>
<td>Primary WINS Server Secondary WINS Server Scope ID Use DHCP for WINS Resolution</td>
</tr>
<tr>
<td>Gateway (list in order; top = first)</td>
<td>First Second Third Fourth Fifth Sixth</td>
</tr>
<tr>
<td>Bindings That Will Use This Protocol (list)</td>
<td></td>
</tr>
<tr>
<td>Advanced (list)</td>
<td>Use TCP/IP as Default</td>
</tr>
</tbody>
</table>
Table 11.14 TCP/IP Protocol Settings Worksheet Continued

<table>
<thead>
<tr>
<th>IP Address</th>
<th>DNS Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable/Enable DNS</td>
<td>Host</td>
</tr>
<tr>
<td>First DNS Server</td>
<td>Second DNS Server</td>
</tr>
<tr>
<td>First Domain Suffix</td>
<td>Second Domain Suffix</td>
</tr>
</tbody>
</table>

Table 11.15 shows how TCP/IP protocols could be set up to enable Internet access via a LAN in an office building. If you use TCP/IP for both Internet and LAN access as your only protocol, your settings will vary.

Table 11.15 Completed TCP/IP Protocol Settings Worksheet—LAN Connection

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Subnet</th>
<th>Address Subnet assigned</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.0.241</td>
<td>255.255.255.0</td>
<td>No</td>
<td>If automatically assigned = "Yes", no values are used for either address or subnet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WINS Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable/Enable Primary WINS Secondary WINS Use DHCP Scope ID for WINS resolution Notes</td>
</tr>
<tr>
<td>Disable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gateway (list in order; top=1st)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
</tr>
<tr>
<td>192.168.0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bindings That Will Use this Protocol (list)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client for Microsoft Networks enabled</td>
</tr>
<tr>
<td>*This is a very dangerous setting. While this may be listed as an option, do not enable it if you use another protocol for your LAN. Enabling this setting would allow anybody on the Web access to your system!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advanced (list)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use TCP/IP as Default</td>
</tr>
<tr>
<td>*This network also uses NetBEUI for internal LAN communications; if TCP/IP were the only protocol, it would be enabled as default.</td>
</tr>
<tr>
<td>disabled*</td>
</tr>
</tbody>
</table>
Table 11.15 Completed TCP/IP Protocol Settings Worksheet—LAN

Connection Continued

<table>
<thead>
<tr>
<th>DNS Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable/Enable DNS</td>
</tr>
<tr>
<td>Enabled</td>
</tr>
<tr>
<td>First DNS Server</td>
</tr>
<tr>
<td>192.168.0.1 (none)</td>
</tr>
<tr>
<td>First Domain Suffix</td>
</tr>
<tr>
<td>(none)</td>
</tr>
</tbody>
</table>

Troubleshooting Networks

Use Tables 11.16 and 11.17 to help you find solutions to common networking problems.

Troubleshooting Network Software Setup

Table 11.16 Troubleshooting Network Software Setup

<table>
<thead>
<tr>
<th>Problem</th>
<th>Symptoms</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duplicate computer IDs</td>
<td>You get a “duplicate computer name” message at startup.</td>
<td>Make sure that every computer on the network has a unique ID (use Control Panel, Network Identification to view this information). Set the ID before connecting to the network.</td>
</tr>
<tr>
<td>Workgroup name doesn’t match.</td>
<td>You don’t see other workstations in Network Neighborhood.</td>
<td>Make sure that every computer that’s supposed to be working together has the same workgroup name. Different workgroup names actually create different workgroups, and you’d need to access them by browsing via “Entire Network.”</td>
</tr>
<tr>
<td>Shared resources not available.</td>
<td>You can’t access drives, printers, or other shared items.</td>
<td>Make sure that shared resources have been set for any servers on your network (including “peer servers” on Windows 9x). If you can’t share a resource through Windows Explorer on the peer server, make sure that File and Printer Sharing has been installed.</td>
</tr>
<tr>
<td>Changes to configuration don’t show up.</td>
<td>Network doesn’t work after making changes.</td>
<td>Did you reboot? Any change in the Network icon in Windows 9x Control Panel requires a system reboot. Did you log in? Any network resources can’t be accessed unless you log in when prompted. You can use Start, Shutdown, Close all Programs, and log in as a new user to recover quickly from a failure to log in.</td>
</tr>
</tbody>
</table>
Troubleshooting Networks in Use

<table>
<thead>
<tr>
<th>Problem</th>
<th>Symptoms</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Connection to network not working for one user | Other users can use shared printers, drives, and so on. | First, have the user use Start, Close All Programs and log in as new user. Pressing Cancel or Esc instead of logging in keeps the user off the network.
 Use Network Neighborhood to browse other computers on network. If browse won't work, make sure correct Network name is listed in properties and that correct protocols and protocol configurations are present. All computers in a workgroup must use same the workgroup name and protocol(s).
 Next, check cable connections at the server and workstation.
 Check NIC for proper operation. Use diagnostics software provided with most cards to test NVRAM, interrupt, loopback, and send/receive signal functions. Use the diagnostics on two NICs on the same network to send and receive signals from each other.
 Use Windows 9x or 2000's Device Manager and check NIC's properties. If any resource conflicts are present, card won't work. Note that IRQ steering on PCI cards with recent chipsets enables multiple devices to share an IRQ without a conflict. |
| Connection to network not working for multiple users | No one can access network. | Loose terminators or BNC T-connectors will cause trouble for all workstations on Thinnet cable segment.
 Hub power or equipment failure will cause trouble for all stations using UTP. |
| Have read-only access instead of full access | Can't save files to shared drive. | If you save your passwords in a password cache, entering the read-only password instead of the full-access password will limit your access with peer servers. |
Table 11.17 Troubleshooting Networks On-the-Fly Continued

<table>
<thead>
<tr>
<th>Problem</th>
<th>Symptoms</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have read-only access</td>
<td>Can't save files to shared drive.</td>
<td>Try un-sharing the resource and try to re-share it, or have the user of that peer server set up new full-access and read-only passwords. Or, don't use password caching by unchecking the Save Password box when you log in to a shared resource. With a client/server network with user lists and rights, check with your network administrator because he or she will need to change the rights for you.</td>
</tr>
</tbody>
</table>

Troubleshooting TCP/IP

Use Table 11.18, in addition to the TCP/IP information presented earlier, to troubleshoot a TCP/IP connection on either a LAN or dial-up connection.

Windows 2000 uses a single networking wizard to configure both types of network connections. With other versions of Windows, TCP/IP configuration for LANs takes place in the Network icon in Control Panel, whereas modems are configured through the Dial-Up Networking properties sheet for a given dial-up connection.

Web browsers that communicate through proxy servers or gateways with the Internet also might require special configuration options. Use the Internet icon in Control Panel to adjust Microsoft Internet Explorer TCP/IP settings. With Netscape Navigator/Communicator, use Edit, Preferences, Advanced, Proxies to adjust proxy server settings.

<table>
<thead>
<tr>
<th>Table 11.18 Troubleshooting TCP/IP Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem</td>
</tr>
<tr>
<td>Incorrect settings in network properties.</td>
</tr>
<tr>
<td>Problem with server type or PPP version.</td>
</tr>
<tr>
<td>Duplicate IP addresses.</td>
</tr>
</tbody>
</table>
Table 11.18 Troubleshooting TCP/IP Connections Continued

<table>
<thead>
<tr>
<th>Problem</th>
<th>Symptoms</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>One user to an IP address.</td>
<td>Can't share the Web.</td>
<td>If you're trying to share your Internet connection, use software such as Artisoft's Ishare or check with your networking hardware vendor for their recommendations. If your LAN uses a proxy server for connection, some sharing products might not work. Windows 98 Second Edition, Windows 2000 Professional, and Windows Me can all be configured as a gateway to enable Internet sharing from a cable modem, dial-up modem, ISDN, or DSL modem connection. For details, see Chapter 6, “Serial Ports and Modems.”</td>
</tr>
<tr>
<td>Browser can't display Web pages.</td>
<td></td>
<td>To verify that the TCP/IP connection works, open an MS-DOS window and type <code>PING websitename</code> (replace <code>websitename</code> with a particular IP address or Web site). If <code>PING</code> indicates that signals are returning, check the proxy settings in the browser. If <code>PING</code> can't connect, recheck your TCP/IP settings for the NIC or modem and retry after making changes.</td>
</tr>
</tbody>
</table>

Direct Cable Connections

Null Modem and Parallel Data-Transfer Cables

A *null modem cable* is a special cable that has its circuits crossed so the transmit data (TD) pin on each serial port connector leads to the receive data (RD) pin on the other. A cable that connects the systems' parallel ports in this way is called a *parallel data-transfer cable*. Cables such as these are usually available at computer stores that sell cables. They are sometimes called *LapLink* cables, after one of the first software products to introduce the concept of the direct cable connection. The cables supplied with FastLynx and other data-transfer programs for MS-DOS and Windows 3.x/9x/Me will also work. A good rule of thumb is this: If the cable works for LapLink or the MS-DOS INTERLNK file transfer utility, you can use it for Direct Cable Connection, as well.
You also can build your own null modem or parallel data-transfer cable using the wiring diagrams that follow. Table 11.19 shows the pins you must connect for a serial cable, using either DB-9 (9-pin) or DB-25 (25-pin) connectors. Table 11.20 shows the connections for a parallel port cable. The parallel cable is slightly harder to build, but is recommended because of its much higher transfer speed and because it will not interfere with existing modems and mouse drivers on computers.

Table 11.19 3-Wire Serial Null Modem Cable Pinouts

<table>
<thead>
<tr>
<th>PC#1</th>
<th>DB-9</th>
<th>DB-25</th>
<th>DB-25</th>
<th>DB-9</th>
<th>PC#2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>RD</td>
</tr>
<tr>
<td>RD</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>TD</td>
</tr>
<tr>
<td>SG</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>SG</td>
</tr>
</tbody>
</table>

Table 11.20 11-Wire Parallel Data-Transfer Cable Pinouts

<table>
<thead>
<tr>
<th>PC #1</th>
<th>PC #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

If you plan to use parallel-mode DCC on a frequent basis, consider purchasing a high-speed Direct Parallel Universal Fast Cable from Parallel Technologies, creators of the Direct Cable Connection software for Microsoft (www.lpt.com). This cable also works with third-party remote-control and file-transfer programs, such as LapLink 2000 and PCAnywhere. This cable boosts performance significantly, especially on systems using ECP or EPP parallel ports.

Direct Connect Software

After you have the hardware in place, you need the proper software for the two systems to communicate. At one time, you had to purchase a third-party product (such as LapLink) to do this, but the
capability is now part of most operating systems, including DOS 6, Windows 9x, Windows Me, Windows NT 4, and Windows 2000. One computer is designated the host and the other is the guest. The software enables a user, working at the guest machine, to transfer files to and from the host. With Windows, you must specify which folders or drives you will share, and you have the option with Windows 9x and Windows Me to specify a password. Windows NT and Windows 2000 require that you add the guest user to your list of authorized users for the host system.

Setting Up and Using MS-DOS Interlink
In DOS, the software consists of two executable files, called INTERSVR.EXE and INTERLNK.EXE. In the DOS version, you run the INTERSVR program on the host computer. This system can be running a different version of DOS; therefore, you have to copy the INTERSVR.EXE program to it from a DOS 6 machine (using a floppy disk). Select the COM or LPT port to which you have connected the cable. INTERSVR then waits until INTERLNK makes a connection.

On the guest computer, you run the INTERLNK.EXE program from a DOS prompt. As before, you are prompted to select the COM or LPT port to which you have connected the cable. After this is completed, the INTERLNK software establishes the connection with the host computer running INTERSVR. Then, the guest computer mounts the drives from the host in its own file system, assigning them the next available drive letters with Interlink.

Setting Up and Using Windows 9x/Me Direct Cable Connection
On Windows 9x/Me, you click the Start menu and then select Programs, Accessories, Direct Cable Connection (on some systems it might be stored in a Communications folder beneath the Accessories folder). Then, choose the Host option button. You are prompted to select the COM or LPT port to which you have connected the cable.

On the other computer, you select the same Direct Cable Connection menu item in Windows and choose the Guest option button. Again, you are prompted to choose the correct port, after which the software establishes a connection between the two machines. With the Windows Direct Cable Connection, you can either access the shared drive as a folder or map a drive letter to it with Windows Explorer after the connection is established.
Windows 9x and DCC can use parallel, serial, or IR ports. Windows Me can also use a separate IR Link utility for initiating file transfers via the infrared port.

Setting Up Windows NT 4 Direct Connection

Windows NT 4 treats direct connections as a form of dial-up networking that uses a serial cable as a substitute for a modem. Thus, you must use the Modems icon in Control Panel to Install a New Modem: Choose Dial-Up Networking Serial Cable Connection Between 2 PCs from the list of standard modems. Parallel connections are not supported in NT 4.

If you are going to host the connection, you also need to do the following:

- Install and configure NT networking (if not already installed)
- Install and configure remote access services (RAS)
- Install NetBEUI protocol

This process is clumsy and complex. A good visual tutorial for both host and guest setup is available online at J. Helmig’s World of Windows Networking Web site:

www.helmig.com/j_helmig/dcnt4.htm

As an alternative, you might want to use LapLink 2000 or other file-transfer programs with your NT 4 system.

Hosting NT 4 Dial-Up Networking Serial Cable Connections

If you’re hosting the connection, log in as Administrator, open the Administrative Tools (common) folder on the Start button, and select Remote Access Administrator.

Open the Server menu and then select Start Remote Access Service. Your server will wait for the connection.

Using NT 4 Dial-Up Networking Serial Cable as Guest

Open the Dial-Up Networking Wizard and create a new connection. For the modem, select the Dial-Up Networking Serial Cable you installed previously. Do not enter a phone number. Click the Server tab and specify PPP: Windows NT as the server type. Next, select NetBEUI as the protocol, select Enable Software Compression, and deselect Enable PPP LCP Extensions.
Enter the username and password required to make the connection to an NT 4 or a Windows 2000 host. If you are connecting to a Windows 9x/Me Direct Cable Connection host instead, you can use any username you want, but enter a password only if the shared resource is using a password for security. After you are connected, you can use the Dial-Up Networking Monitor to check your connection status and speed.

Setting Up and Using Windows 2000 Direct Parallel and Direct Serial Connections

In Windows 2000, you use the same Network Connection Wizard used for other types of network connections to make the link. Most of the network setup work is already done if you also use modem or LAN networking with the computer. Before you start, ensure that the NetBEUI protocol has been installed. Open the Networks icon in the Control Panel, select your current network connection, and view its properties.

To create a connection, click Start, Settings, Network and Dial-Up Connections. Open Make New Connection to start the wizard. If you are prompted for telephone information (area code and outside dialing code), fill in the information before continuing. If you don’t fill this in, your connection options are limited.

To set up DCC, click Next on the first screen and then select Connect Directly to Another Computer. On the next screen, select Host or Guest. Then, on the following screen, select the parallel or serial port you want to use (parallel is recommended).

Next, select the user you are granting access to from the list of authorized users. If the user you want to grant access to isn’t listed, add him with the Users option in the Control Panel. Click Next and then Finish to complete the connection setup process. The system waits for you to make the connection.

Windows 9x, Me, NT 4, and 2000 systems can use their versions of DCC to connect to each other as either guest or host.

Using DCC

After a connection has been established, you can use the drive letters or folders representing the host system just as though they were local resources. You can copy files back and forth using any standard file management tool, such as the DOS COPY command or Windows Explorer. The only difference is that file transfers will, of course, be slower than local hard drive operations.
DCC is the perfect way to install CD-ROM–based software to older machines lacking such drives. You can install the DCC Host software on a notebook computer with a CD-ROM drive, install the DCC Guest software on a desktop computer, cable them together, and install the software. DCC is also the cheapest network around.

I've also used DCC to run tape backups remotely. I set up the system I wanted to back up as the host and logged in to it as guest with the computer containing the tape backup program. After mapping the remote drive to a drive letter, I was able to back up the files via a parallel LapLink-style cable.

Some users have set up DCC on machines using the TCP/IP protocol and used it for game playing. For other advanced tricks you can perform with DCC, see the following Web site:
www.tecno.demon.co.uk/dcc/dcc.html.

Troubleshooting Direct Cable Connections

As Table 11.21 and the following checklist indicate, several places exist where a Direct Cable Connection setup can go wrong. Use this checklist, and Table 11.21, to make this virtually free “network” work best for you:

- Make sure the same networking protocols are installed on both the host and guest machines with Windows 9x, Me, NT, or 2000. The simplest protocol to install is NetBEUI, and that's what Parallel Technologies (creator of DCC) recommends for a basic DCC mini-network. To configure NetBEUI, all you need to supply is the workgroup name (same for both guest and host) and a unique computer name for guest and for host.

- Use the parallel (LPT) ports for DCC when possible; although serial (COM) or IR port transfers will work, they are unbearably slow. Note that Windows Me refers to IR ports by their COM port alias in DCC, not specifically as IR ports.

- Ensure that both host and guest LPT ports are working correctly, with no shared IRQ problems. Use the Windows 9x/Me/2000 Device Manager to check for IRQ conflicts with the parallel port you're using.

- Make sure the person using the guest computer knows the network name of the host computer (set through the Networks icon in Control Panel, Identification tab). With a simple protocol such as NetBEUI, it might be necessary to enter the name to log in to the host machine.
If the user you want to connect to your Windows 2000 or Windows NT host computer isn’t on the list of authorized users, you’ll need to add that user before you set up the direct connection.

• Install the Client for Microsoft Networks on the guest computer.

• Don’t print to the printer(s) normally connected to the LPT port while you’re using DCC; the printer will be set for offline mode and require you to manually release the print jobs after you re-establish the printer(s). Also, allow any print jobs to finish (or hold them or delete them) on any port you want to use for DCC before you set up your cables.

• Make sure that the host computer is sharing a drive, so that the guest computer can copy files from it or move files to it. The sharing is accomplished in the same way that peer-to-peer network sharing is done on Windows 9x/Me systems; on Windows NT/2000, you specify permissions for authorized users.

• If you don’t want to unplug your printer to use DCC, you might want to add a second printer port for DCC use if you plan to use this option frequently.

• Download the DCC troubleshooter from the FAQs and troubleshooting page at Parallel Technologies’s Web site: www.lpt.com/faqs1.htm.

Use Table 11.21 to see whether you are ready to connect your computers via DCC.
Table 11.21 Direct Cable Connection-Type Configuration Requirements by Operating System

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Host Program</th>
<th>Guest Program</th>
<th>Network Components Types to Install</th>
<th>Port Supported</th>
<th>Username Required?</th>
<th>Passwords</th>
<th>Drive</th>
<th>Connects with Other OS Mapping and sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-DOS 6.x</td>
<td>INTERSVR.EXE</td>
<td>INERLNK.EXE</td>
<td>None</td>
<td>Serial, parallel</td>
<td>No</td>
<td>No</td>
<td>Automatically maps all remote drives</td>
<td>MS-DOS or Windows command-prompt using INERLNK/INTERSVR</td>
</tr>
<tr>
<td>Windows 9x, Windows Me</td>
<td>Direct Cable Connection (host and guest)</td>
<td>NetBEUI, MS Network Client</td>
<td>Serial, parallel, IR</td>
<td>No</td>
<td>Optional</td>
<td></td>
<td></td>
<td>Windows NT4 or Windows 2000</td>
</tr>
<tr>
<td>Windows NT 4</td>
<td>Dial-Up Networking (host and guest)</td>
<td>Modem: direct serial connection, NT Networking, RAS, NetBEUI</td>
<td>Serial</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Windows 9x or Windows 2000</td>
</tr>
<tr>
<td>Windows 2000</td>
<td>Direct Parallel or DirectSerial connection (host and guest)</td>
<td>Networking, RAS, NetBEUI</td>
<td>Serial, parallel, IR</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Windows NT4 or Windows 9x</td>
</tr>
</tbody>
</table>
Chapter 12

Operating System Installation and Diagnostic Testing

This chapter covers methods for testing and diagnosing systems and the software you'll use. For hardware tools, see Chapter 13, “Tools and Techniques.”

Installing an Operating System on an Empty Drive

Use this section for a quick reference for the procedures you'll follow and software you'll need to install an operating system.

Installing MS-DOS

Prerequisites:

Create a bootable disk (containing COMMAND.COM and hidden files). The boot disk also should contain FDISK, FORMAT, SYS, and MSD, along with Help, QBasic, and Edit files. Create the bootable disk with FORMAT A:/S on a system with the same MS-DOS version. Then, copy files from the \DOS folder.

Follow these steps:

1. Boot the system with the bootable disk.
2. Run FDISK and create the partition(s) desired. The drive must have an active (which will be C: and bootable) partition; it can also have an extended partition (D: and beyond) that can contain one or more drives.
3. Exit FDISK.
4. Reboot the computer with the bootable disk.
5. Run FORMAT to format drive(s) created with FDISK:

 FORMAT C:/S formats & copies system files to C:
 FORMD D: formats D: drive if present; repeat for E: & others

6. Remove the bootable floppy and restart the system from the C: drive.
7. Install the remainder of the operating system files from the disk or other storage device (install drivers first if necessary).
Installing Windows 9x

Prerequisites:

You’ll need an Emergency System Disk (create it on a computer with the same OS, or use the bootable disk supplied with the full version). The disk must contain at least COMMAND.COM and hidden files, plus FDISK, FORMAT, SYS, and Edit.

Follow these steps:

1. Boot the system with the Emergency System Disk.
2. Run FDISK and select Large Drive Support if you want to exceed 2GB per drive letter with Windows 95 OSR2.x/98/Me. Create the partition(s) desired. The drive must have an active partition (which will be C: and bootable) and can also have an extended partition (D: and beyond) that can contain one or more drives.
3. Exit FDISK.
4. Reboot the computer with the bootable disk.
5. Run FORMAT to format drive(s) created with FDISK:
   ```
   FORMAT C:/S formats & copies system files to C:
   FORMAT D: formats D: drive if present; repeat for E: & others
   ```
6. Remove the bootable floppy and restart the system from the C: drive.
7. Install the remainder of the operating system files from the CD-ROM or Windows 95 disc; install CD-ROM drivers and restart the system. You must provide proof of a previous OS purchase (old Windows disks or CD-ROM) when prompted if you are installing an upgrade version onto a blank drive.

Note

You can also use OEMSETUP from a CD-ROM (called by the setup program on disk) if you want to automate the process with the full (non-upgrade) version.

Installing Windows Me

Prerequisites:

- An Emergency Startup (boot) Disk (EBD) created from another Windows Me or Windows 98 installation
Installing an Operating System on an Empty Drive

- Hardware drivers (for Me or Windows 98) for any hardware not supported by the drivers on the Windows Me CD-ROM
- The Windows Me CD-ROM drive

Follow these steps:

1. Boot the system with the Emergency Startup Disk.
2. Run FDISK and select Large Drive Support if you want to exceed 2GB per drive letter and if any other OS you might install can also use FAT-32. Create the partition(s) desired. The drive must have an active partition (which will be C: and bootable); it can also have an extended partition that can contain one or more drives (D: and beyond).
3. Exit FDISK.
4. Reboot the computer with the Emergency Startup Disk.
5. Run FORMAT to format drive(s) created with FDISK:

   ```
   FORMAT C: formats C: drive
   FORMAT D: formats D: drive if present; repeat for E: & others
   ```
6. Restart the system with the EBD; boot files will be installed on the hard disk during step 7.
7. Install the remainder of the operating system files from the Windows Me CD-ROM as prompted. Restart the system when prompted. You must provide proof of a previous OS purchase (such as old Windows disks or a CD-ROM) when prompted if you are installing an upgrade version onto a blank drive.

Installing Windows NT 4.0 or Windows 2000

Prerequisites:

You will need to create setup disks (three or four—it varies with each version) by running WINNT32 from the \I386 folder of the Windows NT 4.0 or Windows 2000 CD-ROM. The computer you use to create these disks doesn’t need to be running Windows NT 4.0 or Windows 2000.

Follow these steps:

1. Start the installation process on the target computer by putting Setup disk 1 into the A: drive and restarting the computer; follow the prompts for each additional disk.
2. Put the Windows NT 4.0 or Windows 2000 CD-ROM into the CD-ROM drive on the target computer when prompted and follow the prompts to complete the installation process.

Upgrading an Operating System
Installing to the Same Folder
Installing the new version of an operating system (such as Windows 9x, Me, or 2000) to the same folder as the existing version of Windows upgrades your current copy. You will not need to reinstall applications to use them.

Installing to a Different Folder
Installing the new version of an operating system to a different folder can enable you to dual-boot (select which operating system to use at each system startup) your computer. If you want to use your existing applications with the new operating system, you must reinstall your applications to the new folder.

Note
If you are interested in building a computer with more than one bootable operating system, I recommend picking up a copy of The Multi-Boot Configuration Handbook, published by Que.

Installing to a Different Partition
Installing the new version of an operating system to a different partition is similar to installing to a different folder, plus it enables you to use a more efficient partitioning method than if you install to the same folder or different folder on the same drive. See information on FAT-32 and NTFS in Chapter 4, “SCSI and IDE Hard Drives and Optical Drives,” for details.

Checking for IRQ, DMA, I/O, and Memory Usage
MS-DOS Using MSD
Follow these steps:

1. Start MSD from the \DOS or \Windows folder, or from the CD-ROM if you are using a version of Windows 9x that includes it.

2. To see IRQ usage, select Q from the main menu.
3. View the IRQ listing; items listed as “reserved” are allegedly available, unless you see a device driver or device name listed in the right column. Standard IRQs are also listed; however, if the device (serial, parallel, or other port) is absent, the IRQ listed for the device is also free.

Note

MSD is unreliable for detecting IRQ usage by non-standard peripherals, such as sound cards and network cards. If you run MSD within an MS-DOS window under Windows 9x, you will see memory and other information assigned to your DOS session, rather than the full amount of memory and so on.

As an alternative that’s also more accurate, use the IRQ detection features in Norton Diagnostics (part of the Norton Utilities or System Works), CheckIt, QA Plus, or AMIDiag (the latest versions are best).

4. To see the I/O Port address usage for serial and parallel ports only, select C(om) for serial ports or L(pt) for parallel ports.

5. To see the conventional memory usage (BIOS chips and UMBs), select M from the main menu. The display on the left shows a visual map of usage; the display on the right lists memory managers in use and memory created by HIMEM.SYS, EMM386.EXE, or equivalents.

Windows 9x/2000/Me

1. Right-click My Computer.
2. Select Properties.
3. Select the Device Manager tab.
4. Double-click the Computer icon at the top of the list of device categories.
5. Select Interrupt Request (IRQ) from the list of choices.
6. The IRQs in use (0–15) are listed along with the devices using them; IRQs not listed are free. A yellow (!) icon indicates devices with conflicts or other problems. A blue (I) icon indicates a PnP (Plug and Play) device that has been set manually.
Windows NT 4.0

1. Click the Start button, Programs, Administrative Tools (common), Windows NT Diagnostics.
2. Select the Resources tab.
3. Click IRQ to see the IRQs in use, along with the devices using them; IRQs not listed are available.
4. Click I/O Port to see I/O port addresses in use.
5. Click DMA to see DMA channels in use.
6. Click Memory to see memory addresses in use.

Software Toolkit

Tables 12.1–12.3 list the software tools you should have to perform important tests.

Tip

If you have a CD-R or CD-RW drive and licenses permit, create a CD-R with an entire collection of tools you can take with you.

<table>
<thead>
<tr>
<th>Table 12.1 Operating System Software and Drivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Your operating system files on CD</td>
</tr>
<tr>
<td>Bootable disk with CD-ROM driver(s) for each operating system supported</td>
</tr>
<tr>
<td>Standard system image on bootable CD-R</td>
</tr>
</tbody>
</table>
Table 12.1 Operating System Software and Drivers Continued

<table>
<thead>
<tr>
<th>Item</th>
<th>Purpose</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows 98/Me Emergency disk</td>
<td>Has drivers for most CD-ROM drives</td>
<td>Can be used to “cheat” by making a CD-ROM drive available for a Windows 95 installation.</td>
</tr>
<tr>
<td>Network card software</td>
<td>Including drivers, test, and diagnostic software</td>
<td>Use to verify proper operation and test network communication.</td>
</tr>
</tbody>
</table>

Table 12.2 includes the most popular testing, maintenance, and reference programs and files found in Microsoft Windows and MS-DOS.

Table 12.2 Testing, Maintenance, and Reference Software Included in Major Operating Systems

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSD.EXE</td>
<td>Microsoft Diagnostics</td>
<td>Found in MS-DOS and Windows 3.1 standard installations and on some versions of the Windows 95 CD-ROM. Provides useful information, especially on COM and LPT ports, BIOS and video data, and mouse testing. Offers printer testing that works for laser, inkjet, and even PostScript printers. Inaccurate IRQ listings are a major limitation.</td>
</tr>
<tr>
<td>WINMSD.EXE</td>
<td>Microsoft Diagnostics</td>
<td>Standard Windows NT system reporting tool.</td>
</tr>
<tr>
<td>HWDIAG.EXE</td>
<td>Hardware Diagnostics</td>
<td>Found on OEM CD-ROM versions of Windows 95 OSR2.x. Can be downloaded from User.aol.com/AXCEL216/osr2.htm (the Tricks + Secrets Files database) for Win95 users who don’t have it on their CD-ROMs. More thorough and accurate than the Windows 95 Device Manager information about hardware drivers and resources. Also lists INF files and Registry keys. Works with all releases of Windows 95.</td>
</tr>
<tr>
<td>HWINFO.EXE</td>
<td>System Diagnostics</td>
<td>Similar to HWDIAG.EXE, but for Windows 98.</td>
</tr>
<tr>
<td>MSIE32.EXE</td>
<td>System Information</td>
<td>Similar to Windows 98 and Office 97. Provides information superior to Device Manager reports in Windows 95. Office 97 and newer versions can be used with Windows 95/98/NT4. Maintains history of device drivers and links to other repair tools.</td>
</tr>
</tbody>
</table>
Table 12.2 Testing, Maintenance, and Reference Software Included in Major Operating Systems Continued

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Win95rk.hlp | Windows 95 Resource Kit | The entire 1,200+ page text of Windows 95 Resource Kit book is stored on the Windows 95 CD-ROM as a help file in \Admin\Reskit\Helpfile.
Windows 98 Resource Kit Online is a similar product stored in Tools\Reskit\Help on the Windows 98 CD.
Both provide large amounts of technical references and troubleshooters not found in the standard help system. |
| Help.exe | MS-DOS 6.x Help file | Standard part of the MS-DOS 6.x installation.
Contained on some CD-ROM versions of Windows 95.
Lists all internal and external MS-DOS 6.x commands along with syntax and usage notes. Most command-line utilities in Windows 9x are similar, so it's still useful to refer to.
Limited help is available with most DOS or Windows command-line utilities by typing /? after the command. |
Performs a check of disk structures and (optional) surface testing.
Runs automatically in Windows 95 OSR2.x and Windows 98/Me if Windows isn't shut down properly.
Best used from drive properties sheet in Windows 9x/Me/NT/2000 because it tracks last use. Run before defrag or backup. |
Realigns all files into contiguous clusters in full defrag mode. Windows 98/Me offers enhanced options for faster program loading. Run program from the Start button to adjust properties.
Windows NT 4.0 and earlier must use a third-party defragmenter, such as Diskeeper.
Windows 2000 contains a defragger based on Diskeeper. |
Table 12.3 lists third-party diagnostic and testing utilities, most of which go beyond what can be done with built-in operating system utilities. Web sites are listed for products that aren’t widely found at retail locations.

<table>
<thead>
<tr>
<th>Program</th>
<th>Uses</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norton Utilities</td>
<td>Hardware testing, data protection, data recovery, system information, system speedups, anti-virus, deffragment and disk testing routines significantly better than standard Microsoft utilities</td>
<td>Best buy when purchased as part of System Works Professional, which includes many other programs; loopback plugs are available for serial and parallel port testing.</td>
</tr>
<tr>
<td>AMIDiag</td>
<td>Hardware testing, system information; burn-in test routines included for stress testing of new equipment</td>
<td>From the makers of the AMI BIOS; are loopback plugs available for serial and parallel port testing.</td>
</tr>
<tr>
<td>Win CheckIt 6.5</td>
<td>Hardware testing, system information; burn-in test routines included for stress testing of new equipment; for Windows 9x/Me/NT</td>
<td>Can be used to gather information from multiple PCs and analyze reports for stress testing of new equipment; loopback plugs are available for serial and parallel port testing.</td>
</tr>
<tr>
<td>TestDrive</td>
<td>Floppy drive testing and diagnostic utility</td>
<td>Provides thorough information, especially when used with the appropriate Accuride Digital Diagnostic Disk.</td>
</tr>
<tr>
<td>SpinRite</td>
<td>Hard disk testing and data recovery</td>
<td>Dynastat Data Recovery, extremely accurate at recovering data from damaged drives; same vendor offers Trouble in Paradise tester for Zip drive media.</td>
</tr>
<tr>
<td>AntiVirus Available from Trend Micro, Norton, DrSolomon, McAfee, and others</td>
<td>Detect, clean, and prevent viruses and attacks</td>
<td>Use against program, macro, data, and Web-based viruses; use more than one for maximum protection.</td>
</tr>
</tbody>
</table>
Chapter 13

Tools and Techniques

General Information
Use this chapter as a checklist to help you select the equipment you need to solve computer problems more quickly and easily. Most of the items in the following lists have been mentioned in other chapters. Use these tools along with the “how-tos” in Chapter 12, “Operating System Installation and Testing,” to help you get ready for battle with computer problems—and win!

Hardware Tools and Their Uses
Compare your toolbox’s contents to the items listed in Table 13.1; if you are missing some items, sooner or later you’ll wish you had them. Add them now. The list is divided into sections, enabling you to customize the toolkit for the types of service tasks you typically perform.

<table>
<thead>
<tr>
<th>Table 13.1 Basic Hardware Tools Everybody Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Phillips-head and flat-blade screwdrivers #2 size for most jobs</td>
</tr>
<tr>
<td>Hex-head drivers (assorted sizes)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Needle-nose pliers</td>
</tr>
<tr>
<td>3-claw parts retrieval tool</td>
</tr>
<tr>
<td>Tweezers</td>
</tr>
</tbody>
</table>
Table 13.1 Basic Hardware Tools Everybody Needs Continued

<table>
<thead>
<tr>
<th>Item</th>
<th>Purpose</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small flashlight</td>
<td>Illuminating dark places in case</td>
<td>Can be combined with magnifier; for bench use, get arm-mounted magnifier with light.</td>
</tr>
<tr>
<td>File</td>
<td>Gently trimming edges on drive faceplates or case edges</td>
<td>Get file with a very fine “tooth” and use it sparingly.</td>
</tr>
<tr>
<td>Wire cutter or stripper</td>
<td>Fixing damaged power cables or cutting away bad connectors</td>
<td>Check gauges to make sure your stripper can handle the small wires inside a PC; never cut a wire unless the power is unplugged (not just turned off—because of power-management features in newer systems).</td>
</tr>
<tr>
<td>ESD (electrostatic discharge) protection kit</td>
<td>Attach wrist strap to you; cable to ground; unplug system before working inside</td>
<td>Comprises a mat for parts and the wrist strap for you; metal plate on wrist strap must be comfortably tight on your wrist to ground you properly.</td>
</tr>
<tr>
<td>Soldering iron</td>
<td>Used on conventionally soldered (not surface-mounted!) chips that have bad solder joints</td>
<td>Practice, practice, practice on “dead” boards before you solder a board that’s worth fixing.</td>
</tr>
<tr>
<td>Toothpick or thin wire</td>
<td>Probing the depth of screw holes</td>
<td>Helps you avoid damaging a drive by using a mounting screw that’s too long.</td>
</tr>
</tbody>
</table>

Tools of the Trade—Drive Installation

Table 13.2 provides a list of tools and parts you’ll need to install disk drives.

Table 13.2 Disk Drive Installation Tools and Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Purpose</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floppy drive cable</td>
<td>Used as replacement for suspected failures</td>
<td>Some newer Super I/O chips support drive A only. Use known, working rather than new and unknown. Use a 5-connector cable if you need support for 5” drives.</td>
</tr>
<tr>
<td>IDE hard drive cable (40-pin)</td>
<td>Used as replacement for suspected failures</td>
<td>Should be no more than 18” for use with UDMA drives. Check spacing between first and second drive connector if you want to use master and slave on drives in non-adjacent bays. Use known, working rather than new and unknown.</td>
</tr>
</tbody>
</table>
Table 13.2 Disk Drive Installation Tools and Parts Continued

<table>
<thead>
<tr>
<th>Item</th>
<th>Purpose</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDE hard drive cable with blue end (40-pin, 80-wire)</td>
<td>Used as replacement for suspected failures</td>
<td>Required for UDMA/ATA-66; high-quality for all other drives. Blue end to motherboard.</td>
</tr>
<tr>
<td>SCSI ribbon and SCSI external cables</td>
<td>Used as replacement for suspected failures</td>
<td>Use 25-pin, 50-pin, or 68-pin, depending on device needs. Use known, working rather than new and unknown.</td>
</tr>
<tr>
<td>Mounting screws</td>
<td>Used to attach drives to drive bays</td>
<td>Keep spare screws from existing or scrapped-out systems. Use the shortest screws that work because overlying long screws can destroy a drive.</td>
</tr>
<tr>
<td>Y-cable power splitters</td>
<td>Enables single power connector to run two drives</td>
<td>Examine carefully. Buy splitters with high-quality construction and wire the same gauge as power supply.</td>
</tr>
<tr>
<td>Mounting frame</td>
<td>Puts 3.5" drives in 5.25" bay</td>
<td>Standard with most 3.5" retail-pack hard drives; save spares.</td>
</tr>
<tr>
<td>Digital Multimeter (DMM)</td>
<td>Tests power going to drive and cable continuity</td>
<td>Test new and unknown cables before using them.</td>
</tr>
<tr>
<td>Spare battery for DMM</td>
<td>Keeps tester working</td>
<td>Keep in original blister packaging so it won’t short out.</td>
</tr>
<tr>
<td>Jumper blocks</td>
<td>Used to adjust IDE drive configuration for master, slave</td>
<td>WD drives use the same jumpers as motherboards and add-on cards; some Maxtor and Seagate models use a smaller size.</td>
</tr>
<tr>
<td>Rails</td>
<td>Used for mounting 5.25" drives to some cases</td>
<td>Check compatibility because rail types vary—two rails per drive.</td>
</tr>
</tbody>
</table>

Tools of the Trade—Motherboard and Expansion Card Installation

Table 13.3 provides a list of helpful tools when installing motherboards and expansion cards.

Table 13.3 Motherboard and Card Installation Parts and Tools

<table>
<thead>
<tr>
<th>Item</th>
<th>Purpose</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand-off connectors</td>
<td>Holds motherboard off bottom or side of case</td>
<td>Use existing standoffs if in good condition. Buy the same size if they must be replaced.</td>
</tr>
<tr>
<td>Slot covers</td>
<td>Covers rear of case openings for card slots without cards</td>
<td>System cooling is affected if these are missing. Keep spares from scrapped systems, or when adding cards.</td>
</tr>
</tbody>
</table>
Table 13.3 Motherboard and Card Installation Parts and Tools

<table>
<thead>
<tr>
<th>Item</th>
<th>Purpose</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumper blocks</td>
<td>Used to adjust motherboard and add-on card</td>
<td>Buy long-handled jumper blocks for easier configuration changes.</td>
</tr>
<tr>
<td></td>
<td>configurations</td>
<td></td>
</tr>
<tr>
<td>Digital</td>
<td>Tests power going to motherboard and</td>
<td>Use power supply case as ground.</td>
</tr>
<tr>
<td>Multimeter (DMM)</td>
<td>expansion slots</td>
<td></td>
</tr>
<tr>
<td>Outlet tester</td>
<td>Quick plug-in tester for bad ground, other</td>
<td>Finds real cause of "inexplicable" lockups and system failure—bad</td>
</tr>
<tr>
<td></td>
<td>wiring faults</td>
<td>power.</td>
</tr>
<tr>
<td>POST testing</td>
<td>Used to diagnose bootup problems</td>
<td>Use BIOS POST code tables along with board.</td>
</tr>
<tr>
<td>card</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRQ/DMA testing</td>
<td>Used to diagnose IRQ and DMA usage and</td>
<td>Can be combined with POST features on some models.</td>
</tr>
<tr>
<td>card</td>
<td>problems</td>
<td></td>
</tr>
<tr>
<td>Spare Pentium,</td>
<td>Used to test motherboard when no POST codes</td>
<td>Salvage low-speed versions from retired "junk" PCs.</td>
</tr>
<tr>
<td>Pentium II, K6,</td>
<td>appear</td>
<td></td>
</tr>
<tr>
<td>other CPUs</td>
<td></td>
<td>Be sure you jumper host system appropriately and rejumper after re-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inserting original CPU.</td>
</tr>
<tr>
<td>Spare memory</td>
<td>Used to test motherboard that produces memory</td>
<td>Salvage compatible small-size types from retired "junk" PCs.</td>
</tr>
<tr>
<td>modules</td>
<td>errors during POST</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Two 4MB 72-pin SIMMs and one 16MB SDRAM DIMM can test most common PCs.</td>
</tr>
</tbody>
</table>

1. POST codes (also called hex codes) for popular BIOS versions are provided on the CD-ROM supplied with Upgrading and Repairing PCs, 12th Edition, and are also available from the Web sites of BIOS, system, and motherboard vendors.

Tools of the Trade—External Device and Networking Installation

Table 13.4 provides a list of tools and parts you’ll need to install external devices and network cables.

Table 13.4 External Devices and Networking

<table>
<thead>
<tr>
<th>Item</th>
<th>Purpose</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loopback plug for serial port</td>
<td>Used to test serial (COM) ports and cables</td>
<td>Buy or build to match your favorite diagnostic software (see the following).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buy or build 25-pin version as well as 9-pin if you want to test modern cables or if your systems have 25-pin serial ports.</td>
</tr>
</tbody>
</table>
Table 13.4 External Devices and Networking Continued

<table>
<thead>
<tr>
<th>Item</th>
<th>Purpose</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loopback plug for parallel port</td>
<td>Used to test parallel (LPT) ports and cables</td>
<td>Buy or build to match your favorite diagnostic software (refer to Chapter 12). Can aid in detection of IRQ usage.</td>
</tr>
<tr>
<td>IEEE-1284 parallel cable</td>
<td>Known, working spare for all types of parallel printers</td>
<td>Buy 10’ cable to have extra distance in tricky cabling situations.</td>
</tr>
<tr>
<td>“Silver satin” phone cable</td>
<td>Known, working spare for modems and all-in-one units</td>
<td>Carry 10’–15’ at least (it’s small!).</td>
</tr>
<tr>
<td>RJ-45 network cable</td>
<td>Known, working spare for Ethernet, Fast Ethernet, and Token-Ring networks</td>
<td>Use along with hub to test card and port. Use two pieces at 15’–25’ to make an impromptu network.</td>
</tr>
<tr>
<td>5-Port Ethernet hub 10/100 speed</td>
<td>Known, working connection for RJ-45 cable</td>
<td>Attach spare cable to hub, check connection with lights.</td>
</tr>
<tr>
<td>USB cables and hub</td>
<td>Known, working spare for USB devices</td>
<td>Use powered hub. Have at least one “A” to “A” extension cable and at least one “A” to “B” device cable.</td>
</tr>
<tr>
<td>Device-specific cables</td>
<td>RS-232 modem, SCSI, parallel or serial switchbox, others</td>
<td>Allows isolation of device-specific problems.</td>
</tr>
</tbody>
</table>

Tools of the Trade—Data Transfer

Use Table 13.5 to prepare to pull vital data from systems.

Table 13.5 Data-Transfer Tools, Parts, and Supplies

<table>
<thead>
<tr>
<th>Item</th>
<th>Purpose</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel data-cable</td>
<td>Used with Interlink, Direct Cable Connection, or LapLink to move files without a network</td>
<td>Parallel transfer is preferred because of speed advantage over serial.</td>
</tr>
<tr>
<td>Null-modem serial cable</td>
<td>Used with Interlink, Direct Cable Connection, or LapLink to move files without a network</td>
<td>Previous parallel version preferred. Carry this one as a fallback or for use with Windows NT.</td>
</tr>
</tbody>
</table>
Table 13.5 Data-Transfer Tools, Parts, and Supplies Continued

<table>
<thead>
<tr>
<th>Item</th>
<th>Purpose</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drives and media</td>
<td>Select from the following, depending on the drive technologies you support: 3.5" floppy 3.5" SuperDisk Zip 100 CD-R CD-RW DVD-ROM DVD-RAM SyQuest SparQ Etc.</td>
<td></td>
</tr>
<tr>
<td>Tape backup cartridges</td>
<td>Carry two of each magnetic device, and one of each optical device you support for use as a backup for vital data.</td>
<td></td>
</tr>
</tbody>
</table>

Tools of the Trade—Cleaning and Maintenance

Table 13.6 provides a list of supplies you should keep on hand for cleaning and maintaining PC hardware.

Table 13.6 Cleaning and Maintenance Supplies

<table>
<thead>
<tr>
<th>Item</th>
<th>Purpose</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floppy drive cleaning kit</td>
<td>Removes gunk from read/write heads</td>
<td>Use wet-type cleaner. Not for use on SuperDisk drives! Works best when software-driven with a program, such as TestDrive.</td>
</tr>
<tr>
<td>SuperDisk LS-120 Cleaning kit</td>
<td>Removes gunk from read/write heads of SuperDisk/LS-120 drives only</td>
<td>Use Imation-brand or Imation-approved kits.</td>
</tr>
<tr>
<td>Tape drive cleaning kit</td>
<td>Removes gunk from read/write heads</td>
<td>QIC models also can be used with QIC-wide and Travan. Consult drive manufacturer for service interval.</td>
</tr>
<tr>
<td>Endust for Electronics</td>
<td>Effective surface cleaner for monitor cases, monitor glass, keyboards, and other PC part</td>
<td>Blue and silver can. Never spray directly on object to be cleaned! Spray on lint-free cloth till damp, then wipe.</td>
</tr>
<tr>
<td>Item</td>
<td>Purpose</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Electronic contact cleaner</td>
<td>Stabilant 22a, CAIG ProGold, CAIG Calube MCL (contact vendors for product use details)</td>
<td>Great for lubricating and protecting contacts on card slots, disk drive connectors, and so on.</td>
</tr>
<tr>
<td>ESD-safe vacuum cleaner</td>
<td>Eliminates dust and gunk instead of blowing it around</td>
<td>Ensure unit is designed for computer use.</td>
</tr>
<tr>
<td>Canned air</td>
<td>Used to clean out dust from power supplies, keyboards, and cases</td>
<td>Hold can at recommended angle; spread newspapers under and behind what you’re cleaning to catch the junk you remove.</td>
</tr>
<tr>
<td>Foam or chamois cleaning swabs</td>
<td>Used for drive-head and contact cleaning</td>
<td>Use in place of cotton swabs, which shed.</td>
</tr>
<tr>
<td>Silicone sprays</td>
<td>Lubricates moving parts</td>
<td>Check label. Spray on swab and apply sparingly to item. Don’t spray item directly.</td>
</tr>
</tbody>
</table>
Chapter 14

Connector Quick Reference

Serial Ports and Cables

DB-25m 25-pin serial port.

DB-9m 9-pin serial port.

DB-25f 25-pin serial cable.

DB-9f 9-pin serial cable.
Parallel Ports

The three different types of IEEE-1284 parallel port connections. Type A receptacle (DB-25m) is used on computers; Type B receptacle is used on most printers. Some HP LaserJet printers use both Type B and Type C receptacles.

SCSI Ports

The SCSI HD-50m cable connector (top) and HD-50f receptacle (bottom) are the most common types of external SCSI ports used today.

The traditional (Amphenol/Centronics) 50m cable connector (top) and 50f receptacle (bottom) are still widely used for external SCSI devices.
Wide SCSI HD-68m cable connector (top) and HD-68f receptacle (bottom) are used for Wide SCSI external devices.

USB and IEEE-1394 (FireWire)

USB Type A and Type B ports and cables. Use a Type A to Type B cable to run between USB hubs and most USB devices.
Chapter 14—Connector Quick Reference

The standard 6-wire IEEE-1394 (FireWire, i.Link) connector, receptacle, and cable.

Some IEEE-1394 devices use a four-wire cable and receptacle instead, omitting the power lines.
Video Connectors

Video Ports

Video Card Connectors

VGA, DFP, DVI-D, and DVI-I video receptacles (top to bottom).
Video Cables

Video Cable Connectors

- VGA
- DFP
- DVI-D
 - single link
- DVI-D
 - dual-link
- DVI-I
 - single-link

VGA, DFP, DVI-D single link, DVI-D dual link, and DVI-I video cable connectors (top to bottom).
Speaker out, microphone, dual line-in, and MIDI/Joystick port (top to bottom) are found on typical sound cards of all types.
Some or all of these ports—digital DIN, SPDIF in, SPDIF out, MIDI in, and MIDI out (top to bottom)—can be found in various combinations on advanced sound cards. They can be mounted on a daughtercard bracket (shown here), attached to the rear of the sound card itself, or mounted on a box connected to the outside of the computer.
Sound Card Internal Connectors

Typical internal sound card ports include, from left to right, TAD (telephone answering device for use with modems), CD in (for playing music CDs through the sound card speakers), Aux in (for connecting other devices), PC SPK (for playing PC speaker beeps through the sound card's speakers), I2S in (for playing DVD audio), and CD SPDIF (for playing digital audio from CD-ROM drives with SPDIF output).

Network and Modem Ports and Cables

RJ-45 Port and Cable

An RJ-45 port, typically used for UTP Ethernet/Fast Ethernet.

An RJ-45 cable connector, typically used for UTP Ethernet/Fast Ethernet.
RJ-11 Port and Cable Connector

An RJ-11 port, used for modems and other telephone-wire applications. Often found in pairs (one connecting to the telephone network, the other acting as a pass-through to a normal telephone).

An RJ-11 cable, used to connect modems and other telephone-based devices.

Older Network Connectors

A DB-15 connector used for Thick Ethernet (10BASE-5) networks; usually found on the rear of a network card along with an RJ-45 or a BNC connector.

The BNC connector, used by Thin Ethernet along with a T-adapter. The adapter is used to connect the cable to the network card.
The BNC connector with T-adapter, resistor, and BNC (RG-58 Thin Ethernet) cable.
Index

Numbers
2-D operations, 248
3-claw parts retrieval tool, 309
3-D chipsets, 256
3-D operations, 248
4-wire devices (IEEE-1394), 212
5-pin DIN keyboard connectors, 226
5-port Ethernet hub 10/100 speed, 313
6-pin mini-DIN keyboard connector, 226
8-bit SCSI Centronics 50-pin connectors, 115
9-pin (AT) serial port connectors, 166
9-pin mini-DIN busmouse connector, 231
9-pin to 25-pin serial port connectors, 168
25-pin cables, 116
25-pin connectors, 116
25-pin serial port connectors, 167-168
25-pin serial ports, 168-169
30-pin SIMMs, 39, 44
40-pin interface cables, 95
50-pin SCSI cable, 114
56Kbps modems, 177
65554 SVGA graphics accelerator, 244-246
68-pin SCSI cable, 114
72-pin SIMMs, 39-40, 44
80-pin Alternative-4 connector, 116
100BASE-T cabling standards, 281
101-key Enhanced keyboard, 215, 222-225
102-key Enhanced keyboard, 215, 222-225
104-key Windows keyboard, 215-216, 225
168-pin DIMMs, 44

A
A cable, 114
Accelerated Graphics Port (AGP), 5, 249
Accelerated Graphics Port (AGP) expansion slots, 66
accessing BIOS Setup programs, 82-83
Accessories menu commands (Direct Cable Connection), 292
ACPI (advanced configuration and power interface), 5, 240-241
adapter cards, 48
adapters, video, 246
add-on cards configuring, 50
resource conflicts resolving, 61
symptoms, 57-58
troubleshooting, 57-58
Add/Remove Programs command (Settings menu), 185
Add/Remove Programs menu commands (Windows Setup), 185
adding ports
IEEE-1394, 210-211
USB, 206-207
addresses

I/O (serial ports), 172
memory
adapter cards, 48
hardware/firmware, 46-48
memory apertures, 49
network cards, 48
ports
bus-based devices, 55-56
chipset-based devices, 54
I/O, 54, 57
motherboard, 54

adjusting
delay parameters, 221
refresh rates (video cards), 252-253
typematic repeat rate, 221
Administrative Tools command (Programs menu), 304
Administrative Tools menu commands (Windows NT Diagnostics), 304
ADR (Advanced Digital Recording) tape backup drive, 156-158
advanced configuration and power interface. See ACPI
advanced power management. See APM
AGP (Accelerated Graphics Port), 5, 249
AGP expansion slots, 66
AGP memory, 253
AGP video cards, 250-251
AHA-8945, 210
allocating drive letters (FDISK), 130-131
allocation units, 5

Alphanumeric error codes, 85-86
Alternative 1 connector, 115
Alternative 2 Centronics latch-style connector, 116
alternative jumper settings, 106-107
alternatives to upgrading BIOS, 70-71
AMI BIOS, 79-81
AMI BIOS beep codes, 84
AMI Web site, 81, 307
AMIBID, downloading, 81
AMIDiag, 307
AntiVirus, 307
APM (advanced power management), 5, 240-241
application problems (printers), troubleshooting, 201
ASCII/hexadecimal conversions, 10-17
assigning
IRQs, 208
USB controllers, 208
assignments
DMA, 52
IRQs, 51
asynchronous, 165
asynchronous serial interface, 165
ATA Attachment (ATA) drives. See IDE hard drives
ATA attachment packet interface (ATAPI), 5, 137
ATA systems, comparing to PC/XT systems, 20
ATA (AT Attachment) drives. See IDE hard drives
ATA PC Cards, 155
ATA-2, 97
ATAPI (AT attachment-packet interface), 5, 137
ATI video card chipsets, 254
attachments
parallel-port, 257
USB-port, 257
ATX motherboards, 31, 37
ATX power supplies
color-coding, 36
comparing to LPX power supplies, 34-35
audio in connectors, 260
audio out connectors, 260
AUTOEXEC.BAT file, creating, 138
automatically setting SCSI ID, 119
Aux In connectors, 263
Award BIOS, 81
Award BIOS beep codes, 84
Award Software International, Inc., 81

B
Baby-AT motherboards, 30
backing up
BIOS, 72
data, 160-161
backup/restore failures, troubleshooting, 162
backward compatibility, 156
bad block, troubleshooting, 162
banks (memory), 44-45
Basic input/output system. See BIOS beep codes, 5, 83-88
AMI BIOS, 84
Award BIOS, 84
IBM BIOS, 85-86
MR BIOS, 86-87
Phoenix BIOS, 85
BIOS (Basic input/output system), 5, 69
backing up, 72
configuring, 82-83
determining version, 79
incompatibility with hard drives, 102-103
LBA mode, 99
PnP (Plug-and-Play), 74-77
reporting errors, 83
beep codes, 83-88
onscreen error messages, 88
status codes, 88
Resource Configuration menu, 75-76
testing for upgrades, 70
troubleshooting, 77-78
upgrading, 71, 106
advantages, 69
alternatives, 70-71
chip swap, 71
determining motherboard manufacturer, 79-82
finding upgrades, 71-72
flash upgrades, 71
precautions, 72-73
recovering from failed procedure, 73-74
BIOS chip upgrade, 71
BIOS chips, 5, 69
BIOS configuration worksheet

| BIOS configuration worksheet, 89-92 |
| BIOS recovery procedure, 73-74 |
| BIOS Setup program, 82-83 |
| bits, 3, 165 |
| Bluetooth, 283 |
| BNC connector, 326-327 |
| bootable CDs, troubleshooting, 140-141 |
| bootable disks, creating, 299 |
| breakout boxes, 313 |
| building |
| Ethernet cables, 278-280 |
| loopback plugs, 192 |
| bus mouse, 231 |
| bus-based devices, 55-56 |
| bus-mastering chipsets, 109-111 |
| buses |
| data, 5 |
| Local, 7 |
| PCI, 76 |
| buttons |
| Change Setting, 174 |
| Guest, 292 |
| Properties, 174 |
| bytes, 3 |

C

| /C switch, 135 |
| cable connectors |
| network, 277-278 |
| USB, 206 |
| cables |
| 25-pin, 116 |
| 40-pin, 95 |
| A, 114 |
| data (floppy drives), 146 |
| device-specific, 313 |

| Direct Parallel |
| Universal Fast, 291 |
| Ethernet, building, 278-280 |
| floppy drive, 310 |
| IDE, 95, 310-311 |
| network |
| distance limitations, 280-281 |
| RJ-45 Category 5, 313 |
| null modem, 290-291 |
| P, 114-116 |
| parallel, 313 |
| parallel data-transfer, 290-291 |
| ribbon, 147 |
| RJ-11, 326 |
| RJ-45, 325 |
| SCSI, 114-115 |
| SCSI external, 311 |
| SCSI ribbon, 311 |
| serial, 313, 317 |
| USB, 319 |
| UTP, 9, 273 |
| video, 322 |

| cabling, twisted-pair, 278 |
| cabling standards, 281 |
| canned air, 315 |

| capacity |
| 30-pin SIMMs, 44 |
| hard drives, determining, 101-102 |

| capacity detection |
| (hard drives), troubleshooting, 102-103 |
| capacity issues (hard drives), 104-105 |

| cards |
| adapter, 48 |
| add-on |
| configuring, 50 |
| resource conflicts, 57-58, 61 |
| graphics, 256 |
| interface, troubleshooting, 258 |
client computers (ICS), configuring 333

multifunction, 264-265
network, 48
NIC, 284
POST, 88
sound
 configuring, 263
 external ports, 323
 freeing IRQ 5 for, 267
 hardware conflicts, 266-267
 ISA, 264
 PCI, 264
 troubleshooting, 267
video
 adjusting refresh rates, 252-253
 AGP, 250-251
 comparing, 253
 determining amount of memory, 249
 memory requirements for resolutions/color depths, 247-248
 updating, 250
cartridges, tape backup, 157-158
cathode-ray tubes (CRTs), 5, 238-239
CD SPDIF connectors, 262
CD-ROM drives
 IDE/ATAPI, 139-140
 MS-DOS command-line access, 137-138
 troubleshooting, 138-139
CDs (bootable), troubleshooting, 140-141
central processing units. See CPUs
Centronics 50-pin connectors, 115
Centronics latch-style connectors, 116
Change Setting button, 174
check boxes, Enable On-Demand Dialing, 187
CheckIt Web site, 307
chip swap, 71
chips
 65554 SVGA graphics accelerator, 244-246
 UART (Universal Asynchronous Receiver/Transmitter), 9, 169-170
 identifying, 170-171
 upgrading, 171-172
chipset-based devices, 54
chipsets
 3-D, 256
 bus-mastering, 109-111
 Permedia, 254
video cards
 AGP, 250-251
 ATI, 254
 Cirrus, 254
 S3, 254
 Trident, 254
 Tseng, 254
choosing
 network settings, 274
 tape backup drives, 159
Cirrus video card
chips, 254
cleaning
 foam element keyswitches, 220-221
 PCs, 314
 read/write heads of floppy drives, 145
cleaning kits
 floppy drives, 314
 SuperDisk LS-120, 314
 tape drive, 314
cleaning swabs, 315
client computers (ICS), configuring, 186-187
client/server networking, comparing to peer-to-peer networking, 271-272

Clock multipliers, configuring, 78

Clone systems, 71

Cluster sizes
 - FAT-16, 127-129
 - NTFS (New Technology File System), 128-129

Clusters, 5

Codes, scan, 9

Color coding standards (ports), 10

Color depth, 5, 247-248. See also resolution

Color-coding
 - ATX power supplies, 36
 - PC99 ports, 33-34

COM (communication) ports, 5, 165. See also serial ports

Combo slot, 5

Command-line access, MS-DOS (CD-ROM drives), 137-138

Commands
 - Accessories menu (Direct Cable Connection), 292
 - Add/Remove Programs menu (Windows Setup), 185
 - Administrative Tools menu (Windows NT Diagnostics), 304

Keyboards
 - 104-key Windows keyboard, 216
 - Windows, 216-217
 - Windows dialog box, 217-218

Windows Explorer
 - selected objects, 218-219
 - tree controls, 218
 - folder/shortcut controls, 218

Programs menu (Administrative Tools), 304

Settings menu
 - Add/Remove Programs, 185
 - Control Panel, 171
 - Network and Dial-Up Connections, 294

XCOPY, 133

XCOPY32, 134-135

Communication ports. See COM ports

CompactFlash, 155

Comparing
 - cluster sizes (FAT-16 to FAT-32), 127
 - keyswitches, 220
 - LBA mode to Int13h, 104
 - modems (internal to external), 180
 - motherboards (form factors), 33
 - multiple monitor support, 255
 - networking (client/server to peer-to-peer), 271-272
 - partitions, 129
 - PC/XT systems to AT systems, 20
 - ports (EPP to ECP), 190-191
 - power supplies (LPX to ATX), 34-35
 - printers (PDL-based to host-based), 196
refresh rates, 252
ribbon cables (floppy drive to hard drive), 147
standard keyboards to portable keyboards, 219
tape backup drives, 159-160
USB and IEEE-1394, 211-212
video cards, 253
compatibility, backward, 156
computers, configuring ICS
 client, 186-187
 Gateway, 185-186
 Windows 2000 host, 187-188
CONFIG.SYS file, creating, 138
configuration options
 PCI bus, 76
 PnP BIOS, 75-77
configuration requirements (DCC), 297
configurations (SCSI), troubleshooting, 120-122
configuring
 add-on cards, 50
 BIOS, 82-83
 clock multipliers, 78
 ICS, 185
 client computers, 186-187
 Gateway computers, 185-186
 Windows 2000 host computers, 187-188
 IDE drives, 95
 multiple monitors, 256
 parallel ports, 191
 SCSI drives, 117
serial ports, 172
sound cards, 263
speed
 CPU, 78
 FSB, 78
Conflicting Devices
 List, 174
conflicts
 device, 265
 hardware (sound cards), 266-267
 resource, detecting, 265-266
connection problems (printers), troubleshooting, 199-201
connections
 Internet, sharing, 187-188
 modems, diagnosing, 183
connector pinouts (VGA DB-15), 241-242
connectors
 25-pin, 116
 80-pin Alternative-4, 116
 Alternative 1, 115
 Alternative 2
 Centronics latch-style, 116
 audio in, 260
 audio out, 260
 Aux In, 263
 BNC, 326-327
 CD SPDIF, 262
 DB-15, 326
 DB-25, 117, 189
 DFP, 242
 Digital DIN Out, 263
 DVI (Digital Visual Interface), 243
 DVI-D, 243-244
 DVI-I, 243-244
 IC5 In, 263
 IBM 9-pin serial, 175
 IBM 25-pin serial, 175
connectors

IEE-1394, 320
internal
 pin-type, 261
sound card, 325
joystick, 261
keyboard, 225-226
 5-pin DIN, 226
 6-pin mini-DIN, 226
 signals, 226-227
 specifications, 229
testing, 229
 USB, 226
loopback, 175
MIDI, 261
MIDI in/MIDI out, 262
mono in, 261
mouse, 230-231
network cable, 277-278
Norton Utilities
 9-pin serial, 175
Norton Utilities
 25-pin serial, 175
parallel port, 189
power
 ATX motherboards, 37
drives, 36
floppy drives, 146
power supplies, 36
printer, 117
SCSI, 115
 8-bit Centronics
 50-pin, 115
 DB-25, 116-117
SCSI-2 high-density, 115
serial port
 9-pin, 166
 9-pin to 25-pin, 168
 25-pin, 167-168
SPDIF (Sony/Philips Digital Interface Format), 262
speaker/headphone, 260-262
stand-off, 311
stereo line in,
 260-262
stereo line out, 260,
 262
TAD In, 262
Type A, 189
Type B, 189
Type C, 189
USB cables, extending, 206
USB pinout, 205
Control Panel command (Settings menu), 171
controllers (USB), assigning, 208
conventional memory barriers, 46
conversions, hexadecimal/ASCII, 10-17
converter cables, 209
converting FAT-16 to FAT-32, 128
CPU speed, configuring, 78
CPUs (central processing units), 5, 312
creating
 AUTOEXEC.BAT files, 138
 bootable disks, 299
 CONFIG.SYS files, 138
 Emergency Disk, 137
 Emergency System Disk, 300
 setup disks, 301
CRTs (cathode-ray tubes), 5
display size, 239
resolution, 238
current loop serial devices, 168-169
cylinders (hard drives), 93-94
D

DAT (Digital Audio Tape) tape backup drives, 155
data
 backing up, 160-161
 parallel, 313
 restoring, 161
data bus, 5
data bus widths, 19
data cables, 146
data rates (USB), 209
data transfer rates,
 comparing USB to IEEE-1394, 212
data transfers
 (tools/parts/supplies), 313-314
DB-9 network cable connector, 277
DB-15 connector, 326
DB-15 network cable connector, 277
DB-25 connector, 189
DB-25 printer connectors, 117
DB-25 SCSI connectors, 116-117
DC (direct current), 34
DCC (direct cable connection), 5, 290
 advantages, 294-295
 configuration requirements, 297
 null modem cables, 290-291
 parallel data-transfer cables, 290-291
 software, 291-292
 MS-DOS Interlink, 292
 Windows 9x/Me, 292-293
 Windows NT4, 293
 troubleshooting, 295-296

DDR Consortium, 41
DDR DIMMs, 42
DDR SDRAM (Double Data Rate Synchronous DRAM), 41-42, 253
Defrag (Defrag.exe), 306
delay parameters,
 adjusting, 221
detecting
 DMA, 304
 I/O port address usage, 303
 I/O port addresses, 304
 IRQs, 302-304
 LBA mode support, 100-101
 memory, 303-304
 resource conflicts, 265-266
determining
 amount of memory (video cards), 249
 BIOS version, 79
 hard drive capacity, 101-102
 memory usage, 49
 motherboard manufacturers, 79-82
 parity support, 43-44
 usage
 DMA, 52-53
 I/O port addresses, 57
 IRQs, 52-53
device conflicts, 265.
 See also hardware conflicts
 Device Manager, 6, 53
 Device Manager tab, 174
device-specific cables, 313
devices
4-wire (IEEE-1394), 212
external, installing, 312-313
flash memory, 155
I/O, 1
IEEE-1394, 212-213
legacy, 209
legacy ISA, 75
multimedia, 256-257
pointing, 232-233
SCSI, 119-122
serial (current loop), 168-169
USB
identifying, 205
troubleshooting, 258
video capture, troubleshooting, 257-258
DFP (digital flat panel), 6, 242
DFP connector, 242
DFP pinouts, 242-243
diagnosing modem connection, 183
diagnostic cards (POST cards), 88
diagnostic utilities, 307
diagnostics, loopback tests, 174
Diagnostics tab, 171
Dial-Up Networking Wizard, 293
dialog boxes
Power, 208
Windows, 217-218
differential SCSI, 114-115
Digital Audio Tape (DAT) tape backup drives, 155
Digital DIN Out connectors, 263
digital flat panel (DFP), 6, 242
Digital Multimeter (DMM), 311-312
digital signal processor (DSP), 264
digital versatile disc (DVD), 6
digital video interface (DVI), 6
Digital Visual Interface (DVI) connectors, 243
digitalroom.net Web site, 255
DIMMs (dual inline memory modules), 6, 38-40, 44
Direct Cable Connection command (Accessories menu), 292
direct cable connection. See DCC
direct current (DC), 34
direct memory access. See DMA
direct parallel connections, 294
Direct Parallel Universal Fast cable, 291
direct serial connections, 294
disabling power management, 213, 240
disks, creating bootable, 299
setup, 301
Display Power Management Signaling (DPMS), 239
Display Power Management Standard (DPMS), 6
display problems, troubleshooting, 259-260
display size
CRTs, 239
LCD panels, 239
displays, primary/secondary, 254
distance limitations of network cables, 280-281
divide by 3 rule, 43
divide by 9 rule, 43-44
DMA (direct memory access), 6, 50-52
 assignments, 52
detecting, 304
 usage, determining, 52-53
DMM (Digital Multimeter), 311-312
DMM batteries, 311
DNS (domain name system), 6
DOS wraparound, 101
Double Data Rate SDRAM (DDR SDRAM), 41-42, 253
downloading
AMI/BIID, 81
USB Ready utility, 207
DPMS (Display Power Management Signaling), 239
DPMS (Display Power Management Standard), 6
drive covers (floppy drives), 144
drive detection (tape drives), troubleshooting, 161-162
drive geometry, 6
drive letter size limits, 125
drive letters
FDISK, allocating, 130-131
 logical, 125
drive migration, 133-134
drive power connectors, 36
drive typing (manual), 111-112
driver problems (printers), troubleshooting, 201
drivers
 mouse, 231-232
 operating systems, 304-305
drives
 CD-ROM
 MS-DOS command-line access, 137-138
troubleshooting, 138-140
data transfers, 314
DVD, troubleshooting, 139
floppy, 143
 comparing ribbon cables to hard drive ribbon cables, 147
data cables, 146
drive cover, 144
error messages, 150
hardware conflicts, 146
hardware resources, 145
interface circuit board, 145
logical formatted parameters, 148
power connectors, 146
read/write heads, 145
stepper motor, 144-145
troubleshooting, 144
hard, 93
 BIOS incompatibility, 102-103
capacity detection, troubleshooting, 102-103
capacity issues, 104-105
comparing ribbon cables to floppy drive ribbon cables, 147
cylinders, 93-94
determining capacity, 101-102
formatting, 124
glomer, 94
heads, 93
IDE, 94
improving speed, 107-108
partitioning, 126-127
platters, 93
replacing, 133
sectors per track, 93
support, 106
support for large hard drives, 125-126
troubleshooting, 135-136
unformatting, 133
hot swappable, 116
installing, 310
DMM (Digital Multimeter), 311
DMM batteries, 311
floppy drive cables, 310
IDE hard drive cables, 310-311
jumper blocks, 311
mounting frames, 311
mounting screws, 311
rails, 311
SCSI external cables, 311
SCSI ribbon cables, 311
Y-cable power splitters, 311
logical DOS, 125
master, 95
optical, 137
parallel-port, 203
removable, 150-151
orphans, 153
troubleshooting/repairing, 154
SCSI, configuring, 117
slave, 95
tape
retensioning, 164
troubleshooting, 161-164
tape backup, 155-156
ADR, 156-158
choosing, 159
comparing, 159-160
Travan, 155-157
Zip (Iomega), 153-154
DSP (digital signal processor), 264
dual inline memory module (DIMM), 6, 38-40, 44
DVD (digital versatile disc), 6
DVD drives, troubleshooting, 139
DVI (digital video interface), 6
DVI (Digital Visual Interface) connectors, 243
DVI-D connector, 243-244
DVI-I connector, 243-244
E
/E switch, 135
ECC (Error Correction Code), 6, 43
ECP (Enhanced Capabilities Port), 190
ECP ports
comparing to EPP ports, 190-191
requirements, 191
EIDE (enhanced IDE), 97
EISA (Enhanced Industry Standard Architecture), 6
EISA expansion slots, 62
electronic contact cleaner, 315
electrostatic discharge (ESD) protection kit, 310
Emergency Disk, 137
Emergency System Disk, 300
enabling power management, 213, 240
Encable On-Demand Dialing check box, 187
encryption (wireless networks), 284
Endust for Electronics, 314
Enhanced Capabilities Port (ECP), 190
enhanced IDE (EIDE), 97
Enhanced Industry Standard Architecture, 6
Enhanced Industry Standard Architecture (EISA) expansion slots, 62
Enhanced Serial Ports (ESP), 171
EPP ports
comparing to ECP ports, 190-191
requirements, 191
error codes
Alphanumeric, 85-86
keyboards, 229-230
Error Correction Code (ECC), 6, 43
error messages
floppy drives, 150
onscreen, 88
errors
fatal, 83
non-fatal, 83
parity, 8
reporting (BIOS), 83-88
ESD (electrostatic discharge) protection kit, 310
ESD-safe vacuum cleaners, 315
ESP (Enhanced Serial Ports), 171
ESSID, 284
Ethernet cables, building, 278-280
expanding memory, 44
expansion cards, installing, 311-312
expansion slots, 62, 67
AGP, 66
EISA, 62
ISA, 62
PCI, 66
VL-Bus, 62
Extended CHS mode, 98
Extended Int13h support, 103
extended partitions, 129-130
external devices
installing, 312-313
SCSI, 119
external modems
comparing to internal modems, 180
pinouts, 184
external ports (sound card), 323

F
Fast Ethernet cabling standards, 281
Fast Ethernet NICs, 272
Fast Page-Mode RAM (FPM DRAM)
FPT (Forced Perfect terminators), 120
freeing IRQ5, 267
FSB speed, configuring, 78

G-H
Gateway computers, configuring ICS, 185-186
gigabytes, 3
graphics cards, 256
Guest button, 292
/H switch, 135
hard drive capacity
detection, troubleshooting, 102-103
hard drives, 93
 BIOS incompatibility, 102-103
capacity, determining, 101-102
capacity issues, 104-105
cylinders, 93-94
formatting, 124
 high-level formatting, 124, 132-133
 LLF (low-level formatting), 124
 partitioning, 124
geometry, 94
heads, 93
IDE, 94-96
large (support), 106, 125-126
partitioning, 126-127
platters, 93
replacing, 133
ribbon cables, comparing to floppy drive ribbon cables, 147
sectors per track, 93
speed, improving, 107-108
troubleshooting, 135-136
unformatting, 133
hard problems (hard drives), troubleshooting, 135-136
hardware
 conflicts
 floppy drives, 146
 sound cards, 266-267
 memory addresses, 46-48
Hardware Diagnostics (HWDIAG.EXE), 305
hardware problems
 (printers), troubleshooting, 196-199
hardware resources
 (floppy drives), 145
header cables (USB), 206
heads (hard drives), 93
Help.exe, 306
hertz (Hz), 252
Hewlett-Packard
 printer control language (HP PCL). See PCL
hex-head drivers, 309
hexadecimal/ASCII conversions, 10-17
hidden files, 134
high-level formatting, 124, 132-133
Home Networking
 Wizard, 185
HomePNA (Home Phoneline Networking Alliance), 7, 281-282
HomeRF, 283
host adapter cards (USB), 206
host adapters

IEEE-1394, 210
PCI slots, 211
resource requirements, 211
troubleshooting, 212-213
SCSI, 113
host-based printers, 7, 196
hosting NT4 dial-up networking serial cable connections, 293
hot swappable drives, 116
HotConnect Ultra 8945, 210
HP PCL (Hewlett-Packard printer control language). See PCL hubs, 7, 273
5-port Ethernet, 313
USB, 209
HWDIAG.EXE, 305
HWINFO.EXE, 305
Hz (hertz), 252

icons
Keyboard, 221
Network, 274, 285, 294
ICS (Internet Connection Sharing), 7, 184-185
configuring, 185
client computers, 186-187
Gateway computers, 185-186
Windows 2000 host computers, 187-188
requirements, 185
IDE (Integrated Drive Electronics), 7, 94
bus-mastering chipsets, 109-111
installation, troubleshooting, 112-113
IDE cable, 95
IDE hard drive cables, 310-311
IDE hard drives, 94-96
IDE/ATAPI CD-ROM drives, troubleshooting, 139-140
identifying
UART (Universal Asynchronous Receiver/Transmitter) chips, 170-171
USB ports/devices, 205
IEEE 802.11b, 282
IEEE-1284, 7
IEEE-1284 parallel cables, 313
IEEE-1394, 7, 210
comparing to USB, 211-212
support, 213
IEEE-1394 connector, 320

I/O addresses, 172
I/O devices, 1
I/O ports, 7
addresses, 54, 57, 303-304
troubleshooting, 173-174
I2S In connectors, 263
IBM 9-pin serial loopback connector, 175
IBM 25-pin Parallel Loopback Connector, 192
IBM 25-pin serial loopback connector, 175
IBM BIOS beep codes, 85-86
IEEE-1394 devices, 212-213
IEEE-1394 host adapters, 210
PCI slots, 211
resource requirements, 211
troubleshooting, 212-213
IEEE-1394 ports, 210-211
IEEE-1394 Web sites, 213
iLink, 7, 210. See also IEEE-1394
improving speed of hard drives, 107-108
Industry Standard Architecture (ISA), 7
Industry Standard Architecture (ISA) expansion slots, 62
Infra-Red (IR) mouse, 231
Inport mouse, 231
installation (IDE), troubleshooting, 112-113
installing drives, 310
DMM (Digital Multimeter), 311
DMM batteries, 311
floppy drive cables, 310
IDE hard drive cables, 310-311
jumper blocks, 311
mounting frames, 311
mounting screws, 311
rails, 311
SCSI external cables, 311
SCSI ribbon cables, 311
Y-cable power splitters, 311
expansion cards, 311-312
external devices, 312-313
motherboards, 311-312
MS-DOS, 299
networks, 312-313
operating systems, 302
Windows 9x, 300
Windows 2000, 301-302
Windows Me, 300-301
Windows NT, 301-302
Int13h, comparing to LBA mode, 104
Integrated Drive Electronics. See IDE
Intel processor specifications, 21-22
Intel-compatible processors, 24-26
IntelliEye, 230
IntelliMouse Optical mouse, 230
IntelliMouse with IntelliEye, 230
IntelliType Software, 216
interface cables, 95
interface cards, troubleshooting, 258
interface circuit boards (floppy drives), 145
interface standards (printers), 194
interface types (optical drives), 137
interfaces, asynchronous serial, 165
internal connectors (sound card), 325
internal modems, comparing to external modems, 180
internal pin-type connectors, 261
Internet Connection Sharing tab, 187
Internet connection sharing. See ICS
Internet connections, sharing, 187-188
Internet Protocol (IP), 275
interrupts (serial ports), 172
interrupt request lines. See IRQs
Iomega Web site, 154
Iomega Zip drive, 153-154
IP (Internet Protocol), 275
IPX/SPX protocol, 7, 274
IR (Infra-Red) mouse, 231
IRQ 5, freeing, 267
IRQ steering, 208
IRQ usage, detecting, 302-303
IRQ/DMA testing card, 312
IRQs (interrupt request lines), 7, 50, 172
assigning, 208
assignments, 51
detecting, 304
usage, determining, 52-53
ISA (Industry Standard Architecture), 7
ISA expansion slots, 62
ISA sound cards, 264

J-K

joystick connectors, 261
jumper blocks, 95, 118, 311-312

jumper settings
alternative, 106-107
IDE drives, 96
standard, 106-107

jumpers (Flash Recovery), 73

K Desktop
Environment (KDE), 7
/K switch, 135
K56flex, upgrading to V.90 modems, 178
KDE (K Desktop Environment), 7

keyboard commands
Windows, 216-218
Windows dialog box, 217-218
Windows Explorer, 218-219

keyboard connectors, 225-226
5-pin DIN, 226
6-pin mini-DIN, 226
signals, 226-227
specifications, 229
testing, 229
USB, 226

Keyboard icon, 221

keyboards, 215
101-key Enhanced, 215
102-key Enhanced, 215
104-key Windows, 215-216
comparing standard keyboards to portable keyboards, 219
delay parameters, 221
error codes, 229-230
layout, 221
repairing, 227-228
scan codes, 221
101-/102-key Enhanced keyboards, 222-225
104-key Windows keyboards, 225
troubleshooting, 227-228
typematic repeat rate, 221
USB, 227

keys switches, 219
comparing, 220
foam element, 219-221
membrane, 219
pure mechanical, 219-220
rubber dome, 219

LAN (local area network), 7, 286-287
LapLink cables, 290
Large mode, 98
layout (keyboards), 221
LBA (logical block addressing), 7
LBA mode, 98
BIOS support, 99
comparing to Extended Int13h, 104
support, detecting, 100-101
when to use, 98-99
LBA translation settings, 99-100
LCD (liquid crystal display), 7
LCD panels
display size, 239
resolution, 238
legacy, 7
legacy devices, 209
legacy ISA devices, 75

loopback plugs, 347

legacy ports, 208-209
line printer port (LPT), 7
Linux IEEE-1394 support, 213
Linux USB device support and status Web sites, 209
Linux Web site, 213
liquid crystal display (LCD), 7
lists
Conflicting Devices, 174
Hardware Compatibility, 255
LLF (low-level formatting), 124
local area network. See LAN
Local Bus, 7
local bus specifications, 250
locating USB ports, 206
logic boards, 145
logic parity modules, 43
logical block addressing (LBA), 7
Logical Block Addressing mode. See LBA mode
logical DOS drives, 125
logical drive letters, 125
logical formatted parameters (floppy drives), 148
loopback, 7
loopback connectors, 175
loopback plugs, 174
building, 192
parallel ports, 313
serial ports, 312
loopback tests, 174
LPT (line printer port), 7. See also parallel ports
LPX motherboards, 31
LPX power supplies
 comparing to ATX power supplies, 34-35
 connectors, 36
LS-120, 7
LVD (low-voltage differential) SCSI, 114-115

M
MAC numbers, 284
maintaining PCs (tools/supplies), 314
maintenance software, 305-306
manual drive typing, 111-112
manufacturers of motherboards, determining for BIOS upgrades, 79-82
master drives, 95
MCA (Micro Channel Architecture), 8
MDRAM (Multibank DRAM), 247
media (data transfers), 314
megabytes, 3
membrane keys, 219
memory
 AGP, 253
 banks, 44-45
 DDR DIMMs, 42
 DDR SDRAM, 41-42
detecting Windows
 9x/2000/Me, 304
 Windows NT, 304
DIMMs, 38-40, 44
 expanding, 44
 flash, 6, 69
 parity-checked, 42-43
 RAM, 38
 RDRAM, 40-41
 RIMMs, 41
 SIMMs, 38-39
 30-pin, 39, 44
 72-pin, 39-40, 44
troubleshooting, 45
 usage, determining, 49
 usage within system, 46
 video adapters, 246
 video cards, 249
memory addresses
 adapter cards, 48
 hardware/firmware, 46-48
 memory apertures, 49
 network cards, 48
memory apertures, 49
memory bank, 8
memory barriers, 46
memory modules, 44, 312
Memory Stick, 8, 155
memory usage, detecting, 303
Micro Channel Architecture (MCA), 8
Micro Firmware Web site, 72
Microsoft Diagnostics (WIBMSD.EXE), 305
Microsoft IntelliType Software, 216
MicroSystems Development, Inc., 145
MIDI connectors, 261
MIDI in/MIDI out connectors, 262
modems, 176
56Kbps, 177
comparing internal to external, 180
diagnosing connection, 183
external pinouts, 184
modulation standards/transmission rates, 176-177
technical support, 183
troubleshooting, 180-182
upgrading to V.90, 178
V.90, troubleshooting, 179
Modems Diagnostics tab, 174
modes
Extended CHS, 98
Large, 98
LBA, 98
BIOS support, 99
detecting support, 100-101
when to use, 98-99
Normal, 98
PIO, 107-108
scanning, 203
UDMA, 108
modulation standards (modems), 176-177
modules, logic parity, 43
monitors
comparing size and viewable area, 237
multiple
configuring, 256
support, 253-255
power management, 239-240
ACPI, 240-241
APM, 240-241
DPMS, 239
enabling/disabling, 240
resolution, 238-239
CRTs, 238
LCD panels, 238
screen size recommendations, 239
size, 237
testing, 258-259
troubleshooting, 259-260
mono in connectors, 261
motherboards, 2
ATX, 31, 37
Baby-AT, 30
form factors, 29-30, 33
installing, 311-312
LPX, 31
manufacturers, determining for BIOS upgrades, 79-82
NLX, 32
port addresses, 54
mounting frames, 311
mounting screws, 311
mouse
connectors, 230-231
drivers, 231-232
IntelliMouse Optical, 230
IntelliMouse with IntelliEye, 230
MouseMan Wheel, 230
opto-mechanical, 230
troubleshooting/repairing, 233-235
Wheel Mouse, 230
wireless, 231
mouse ports (PS/2), 231
MouseMan Wheel, 230
MR (Microid Research) BIOS, 82
MR BIOS beep codes, 86-87
MS-DOS

detecting
I/O port usage, 303
IRQ usage, 302-303
memory usage, 303
drive migration, 133-134
installing, 299
MS-DOS 6.x Help file, 306
MS-DOS command-line access (CD-ROM drives), 137-138
MS-DOS Interlink, 292
MSD, starting, 302
MSIE32.EXE, 305
Multibank DRAM (MDRAM), 247
multifunction cards, 264-265
multimedia devices, 256-257
multiple monitors configuring, 256
support, 253-255
Mwave, 8

Network icon, 274
network interface cards. See NICs
network protocols, 275
IPX/SPX, 7, 274
TCP/IP, 274-275, 284
properties, 285
settings, 285-286
troubleshooting, 289-290
network settings, choosing, 274
networking
comparing client/server to peer-to-peer, 271-272
peer-to-peer software, 273-274
networking software, 273-274
networks
installing, 312-313
SOHO (small-office/home-office), 281-282
troubleshooting, 287
on-the-fly, 288-289
software setup, 287
wireless, 282
NIC cards, 284
point-to-point, 283
security/encryption, 284
star-topology, 282
Networks icon, 285, 294
New Technology File System (NTFS), 128-129
nibbles, 3
NICs (network interface cards), 8, 185, 272
Fast Ethernet, 272
wireless networks, 284

needle-nose pliers, 309
NetBEUI, 8
Network and Dial-Up Connections command (Settings menu), 294
network cable connectors, 277-278
network cables
distance limitations, 280-281
RJ-45, 313
network cards memory addresses, 48
Network Connection Wizard, 294
network data-link protocols, 276-277

N
NLX motherboards, 32
non-fatal errors, 83
Normal mode, 98
Norton Utilities, 307
Norton Utilities 9-pin serial loopback connector, 175
Norton Utilities 25-pin parallel loopback connector, 192
Norton Utilities 25-pin serial loopback connector, 175
NT4 dial-up networking serial cable connections
 hosting, 293
 using as guest, 293-294
NTFS (New Technology File System), 128-129
null modem cables, 290-291
null-model serial cable, 313

objects, selected
 (Windows Explorer), 218-219
OHCI (OpenHCI), 213
on-the-fly networks, troubleshooting, 288-289
onscreen error messages, 88
OpenHCI (OHCI), 213
operating systems
 installing, 299
 MS-DOS, 299
 Windows 9x, 300
 Windows 2000, 301-302
 Windows Me, 300-301
 Windows NT, 301-302

software/drivers, 304-305
upgrading, 302
optical drives, 137
opto-mechanical mouse, 230
orphan removable storage drives, 153

P
P cables, 114-116
Page Description Language (PDL), 8, 195
Paralan Corporation
 Web site, 115
parallel cables (IEEE-1284), 313
parallel data, 313
parallel data-transfer cable, 290-291
parallel loopback connectors, 192
parallel port connectors, 189
parallel ports, 318
 configuring, 191
 loopback plugs, 313
 speed, 190
 testing, 191-192
 troubleshooting, 193
Parallel Technologies
 Web site, 296
parallel-port attachments, 257
parallel-port drives, 203
parallel-to-USB converter cables, 209
parameters
 logical formatted
 (floppy drives), 148
 /S, 132
 /V, 132
parity, 8
parity errors, 8
parity support, determining, 43-44
parity-checked memory, 42-43
partitioning, 124-127
partitioning utilities (FDISK), 125
partitions
comparing, 129
extended, 129-130
primary, 129-130
parts (data transfers), 313-314
PC Card, 8
PC/AT, 8
PC/XT, 8
PC/XT systems, comparing to AT systems, 20
PC99 color-coding, 33-34
PCI (Peripheral Component Interconnect), 8, 249
PCI bus configuration options, 76
PCI expansion slots, 66
PCI slots (IEEE-1394), 211
PCI sound cards, 264
PCL (Printer Control Language), 8, 194-195
PCL 4, 195
PCMCIA (Personal Computer Memory Card International Association), 8, 155
PCs, cleaning/maintaining, 314
PDL (Page Description Language), 8, 195
PDL-based printers, 195-196
peer server, 8
peer-to-peer networking
comparing to client/server networking, 271-272
software, 274
pels, 238
Peripheral Component Interconnect (PCI), 8, 249
Peripheral Component Interconnect (PCI) expansion slots, 66
peripherals (USB), 207
Permedia chipsets, 254
Personal Computer Memory Card International Association (PCMCIA), 8, 155
Phillips-head screwdrivers, 309
Phoenix BIOS beep codes, 85
Phoenix BIOS, determining motherboard manufacturers, 82
phone cables, “Silver satin,” 313
pin-type connectors, internal, 261
pinouts
DFP, 242-243
external modems, 184
parallel data-transfer cable, 291
serial ports, 166-168
USB connectors, 205
pins, RD/TD, 290
PIO (programmed input/output), 8
PIO modes, 107-108
pixels, 238
platters (hard drives), 93
pliers, needle-nose, 309
Plug-and-Play (PnP), 8
Plug-and-Play BIOS (PnP BIOS), 74-77
plugs, loopback, 312-313
PnP (Plug-and-Play), 8
PnP (Plug-and-Play) BIOS, 74-77
point-to-point wireless networks, 283
pointing devices, 232-233
portable keyboards, comparing to standard keyboards, 219
ports
bus-based devices, 55-56
chipset-based devices, 54
color coding standards, 10
COM, 165
comparing EPP to ECP, 190-191
ECP, 190-191
EPP, 190-191
external (sound card), 323
I/O, 7
addresses, 54, 57
troubleshooting, 173-174
IEEE-1394, 210-211
legacy, 208-209
LPT, 7
motherboard, 54
mouse (PS/2), 231
parallel, 7, 318
configuring, 191
loopback plugs, 313
speed, 190
testing, 191-192
troubleshooting, 193
PC99 color-coding, 33-34
RJ-11, 326
RJ-45, 325
SCSI, 318-319
serial, 5, 165, 176, 317
25-pin, 168-169
configuring, 172
ESP, 171
interrupts, 172
loopback plugs, 312
pinouts, 166-168
Super ESP, 171
troubleshooting, 173
USB, 205, 319
adding, 206-207
identifying, 205
locating, 206
system requirements, 207
troubleshooting, 207-208
video, 321
POST (power on self test), 8, 85
POST cards, 88
PostScript, 9
power connectors
ATX motherboards, 37
drives, 36
floppy drives, 146
Power dialog box, 208
power management
enabling/disabling, 213
monitors, 239-240
ACPI, 240-241
APM, 240-241
DPMS, 239
enabling/disabling, 240
power on self test (POST), 8, 85
power splitters (Y-cable), 311
power supplies, 34
ATX, color coding, 36
comparing LPX to ATX, 34-35
connectors, 36
troubleshooting, 37-38
precautions when upgrading BIOS, 72-73
primary displays, 254
primary partitions, 129-130
printer connection problems, troubleshooting, 199-201
printer connectors (DB-25), 117
Printer Control Language (PCL), 8, 194-195
printers, 193
comparing PDL-based to host-based, 196
host-based, 7
interface standards, 194
PDL-based, 195
testing, 196
troubleshooting
application problems, 201
driver problems, 201
hardware problems, 196-199
printer connection problems, 199-201
processors
data bus widths, 19
Intel-compatible
socket types and specifications, 26
specifications, 21-24
speed (socket types), 27
troubleshooting, 27-29
programmed input/output (PIO), 8
Programs menu commands
(Administrative Tools), 304
Properties button, 174
properties of TCP/IP network protocols, 285
proprietary versions of Travan backup tape drives, 157
protocols
network, 275
IPX/SPX, 7, 274
TCP/IP. See TCP/IP network protocols
network data-link (specifications), 276-277
PS/2 mouse port, 231
pure mechanical keys, 219-220
Q-R
QIC (Quarter-Inch Committee), 9
QIC tape backup drives, 155
QIC-EX, 9
QIC-EX tape backup cartridges, 157-158
QIC-Wide tape backup drives, 155
Quarter-Inch Committee, 9
/R switch, 135
radio-controlled mouse, 231
RadioLAN Wireless MobilLINK, 282
rails, 311
RAM (random access memory), 38
Rambus DRAM (RDRAM), 40-41
RAMDAC refresh rates, 251-252
speed, 251
random access memory (RAM), 38
RD (receive data) pin, 290
RDRAM (Rambus DRAM), 40-41
read-only memory BIOS (ROM BIOS), 69, 9
read/write heads (floppy drives), 145
Realtime Soft Web site, 255
receive data pin (RD pin), 290
recording system settings, 58, 61
recovering from failed BIOS upgrade procedure, 73-74
reference software, 305-306
refresh rates, 251-252
comparing, 252
flicker-free, 252
RAMDAC, 251-252
video cards, 252-253
register size, 9
reloading Windows, 137-138
removable storage drives, 150-151
orphans, 153
troubleshooting/repairing, 154
repairing
keyboards, 227-228
mouse, 233-235
removable storage drives, 154
Repeat Delay slider, 221
Repeat Rate slider, 221
replacing hard drives, 133
reporting errors (BIOS), 83
beep codes. See beep codes
onscreen error messages, 88
status codes, 88
requirements
DCC configuration, 297
ECC, 43
ECP ports, 191
EPP ports, 191
ICS, 185
UDMA/66, 109
UDMA/100, 109
USB keyboards, 227
resolution, 9, 238-239, 251
CRTs, 238
LCD panels, 238
screen size recommendations, 239
video card memory requirements, 247-248
resolving resource conflicts (add-on cards), 61
Resource Configuration menu, 75-76
resource conflicts
add-on cards
resolving, 61
symptoms, 57-58
troubleshooting, 57-58
detecting, 265-266
resource requirements (IEEE-1394), 211
Resources tab, 174, 304
restoring data from tape backups, 161
retensioning tape drives, 164
ribbon cables, comparing floppy drive to hard drive ribbon cables, 147
RIMMs (Rambus Inline Memory Modules), 41
RJ-11 cable, 326
RJ-11 port, 326
RJ-45 cable, 325
RJ-45 network cable
 Category 5, 313
RJ-45 port, 325
ROM BIOS (read-only memory BIOS), 9, 69
root hubs, 207
RS-232, 9
RS-232 breakout box, 313
RS-422, 168
RS-432, 168
rubber dome keys switches, 219

/S parameter, 132
/S switch, 135
S3 video card chipsets, 254
SCAM (SCSI Configure AutoMagically), 119
scan codes, 9, 221
 101-/102- Enhanced keyboards, 222-225
 104-key Windows keyboards, 225
Scandisk
 (Scandisk.exe), 306
scanners, 202-203
scanning modes, 203
Screen Saver tab, 240
screen size recommendations for monitors, 239
screwdrivers, 309
screws, mounting, 311
SCSI (small computer system interface), 9, 113
 configuration, troubleshooting, 120-122
differential, 114-115
 single-ended, 114
SCSI cables, 114-115
SCSI Configure AutoMagnetically (SCAM), 119
SCSI connectors, 115
 8-bit Centronics 50-pin, 115
 DB-25, 116-117
SCSI devices, 121-122
SCSI drives, configuring, 117
SCSI external cables, 311
SCSI host adapters, 113
SCSI ID, 117-119
SCSI ports, 318-319
SCSI ribbon cables, 311
SCSI termination, 119
SCSI-2 high-density connector, 115
SCSI-3 68-pin P cables, 116
SDRAM (Synchronous DRAM), 40, 247
secondary displays, 254
sectors per track (hard drives), 93
security (wireless networks), 284
selected objects
 (Windows Explorer), 218-219
serial cables, 313, 317
serial devices, current loop, 168-169
serial interface, asynchronous, 165
serial loopback connectors, 175
serial port connectors, 168
serial ports, 5, 165, 176, 317
 25-pin, 168-169
 configuring, 172
 ESP, 171
 I/O addresses, 172
 interrupts, 172
 loopback plugs, 312
 pinouts, 166-168
 Super ESP, 171
troubleshooting, 173
serial-to-USB converter cables, 209
Server tab, 293
servers, peer, 8
setting SCSI ID
 automatically, 119
 external devices, 119
 jumper blocks, 118
setting up direct parallel/direct serial connections (Windows 2000), 294
settings
 jumpers
 alternative, 106-107
 IDE hard drives, 96
 standard, 106-107
 LBA translation, turning on/off, 99-100
 system, recording, 58, 61
 TCP/IP network protocols, 285-287
 write-protect, 73
Settings menu commands
 Add/Remove Programs, 185
 Control Panel, 171
 Network and Dial-Up Connections, 294
setup disks, creating, 301
SGRAM (Synchronous Graphics RAM), 253
shared slot, 5
sharing Internet connections, 187-188
shortcuts (Windows), 218
signals (keyboard connectors), 226-227
“Silver satin” phone cables, 313
SIMMs (Single Inline Memory Modules), 9, 38-39
 30-pin, 39, 44
 72-pin, 39-40, 44
single-ended SCSI, 114
size
 monitors, 237
 register, 9
size limits (drive letters), 125
slave drives, 95
sliders
 Repeat Delay, 221
 Repeat Rate, 221
slot covers, 311
slots, combo/shared, 5
small computer system interface. See SCSI
small-office/home-office networks (SOHO networks), 281-282
SmartMedia, 9, 155
socket types (processor speed), 27
socket types and specifications (Intel-compatible processors), 26
soft problems (hard drives), troubleshooting, 135-136
358 SoftMenu III

SoftMenu III, 78

software
- DCC, 291-292
 - MS-DOS Interlink, 292
 - Windows 9x/Me, 292-293
 - Windows NT4, 293
- maintenance, 305-306
- networking, 273-274
- operating systems, 304-305
- reference, 305-306
- testing, 305-306

software setup (networks), troubleshooting, 287

software toolkit, 304

SOHO (small-office/home-office) networks, 281-282

soldering iron, 310

Sony/Philips Digital Interface Format (SPDIF) connector, 262

sound card external ports, 323

sound card internal connectors, 325

sound cards
- configuring, 263
- freeing IRQ 5 for, 267
- hardware conflicts, 266-267
- ISA, 264
- PCI, 264
- troubleshooting, 267

sound quality standards, 263

SoundBlaster, 9

SPDIF (Sony/Philips Digital Interface Format) connector, 262

speed

CPU, 78

FSB, 78

hard drives, improving, 107-108

parallel ports, 190

processors, 21-24

RAMDAC, 251

Speed tab, 221

SpinRite, 307

splitters (Y-cable), 311

stand-off connectors, 311

standard capacity abbreviations, 3-4

standard jumper settings, 106-107

standard keyboards, comparing to portable keyboards, 219

standards
- cabling, 281
- interface (printers), 194

star-topology wireless networks, 282

start bit, 165

starting MSD, 302

status codes, 88

steering IRQ, 208

stepper motors (floppy drives), 144-145
tape drive cleaning kit

stereo line in connectors, 260-262
stereo line out connectors, 260-262
storage drives, removable, 150-151
 orphans, 153
 troubleshooting/repairing, 154
Super ESP (Enhanced Serial Ports), 171
SuperDisk, 7
SuperDisk LS-120 cleaning kit, 314
SuperDisk Web site, 145
supplies
 cleaning/maintaining PCs, 314
 data transfers, 313-314
support
 Extended Int13h, 103
 hard drives, large, 106
 IEEE-1394, 213
 large hard drives, 125-126
 LBA mode, detecting, 100-101
 multiple monitors, 253-255
 parity, determining, 43-44
switches, 135
Sybergen SyGate Web site, 188
symptoms of resource conflicts (add-on cards), 57-58
Synchronous DRAM (SDRAM), 40, 247
Synchronous Graphics RAM (SGRAM), 253
system BIOS, 69
System Configuration Template, 58
System Diagnostics (HWINFO.EXE), 305
system freezes, troubleshooting, 163
System Information (MSIE32.EXE), 305
system lockups, troubleshooting, 163
system requirements (USB peripherals/ports), 207
system settings, recording, 58, 61
systems, clone, 71

T

tabs
 Device Manager, 174
 Diagnostics, 171
 Internet Connection Sharing, 187
 Modems Diagnostics, 174
 Resource, 304
 Resources, 174
 Screen Saver, 240
 Server, 293
 Speed, 221
TAD (Telephone Answering Device), 262
TAD in connector, 262
tape backup cartridges, 157-158, 314
tape backup drives, 155-156
 ADR, 156-158
 choosing, 159
 comparing, 159-160
 Travan, 155-157
tape backups, 160-161
tape drive cleaning kit, 314
tape drives

retensioning, 164
troubleshooting, 161, 164
backup/restore failures, 162
bad block/tape media errors, 162
drive detection, 161-162
system freezes/lock-ups, 163
tape media errors, troubleshooting, 162
TCP/IP (Transmission Control Protocol/Internet Protocol)
network protocols, 9, 274-275, 284
properties, 285
settings, 285-286
troubleshooting, 289-290
TD (transmit data) pin, 290
technical support (modems), 183
technologies (65554 SVGA graphics accelerator), 244-246
Telephone Answering Device (TAD), 262
templates, System Configuration, 58
terminating resistors, 117
terminators, 119
FPT (Forced Perfect terminators), 120
SCSI, 119
TestDrive floppy drive testing program, 145
testing
BIOS for upgrades, 70
keyboard connectors, 229
monitors, 258-259
parallel ports, 191-192
printers, 196
testing cards (IRQ/DMA), 312
testing software, 305-306
testing utilities, 307
tools, 309
3-claw parts retrieval tool, 309
cleaning/maintaining PCs, 310
data transfers, 313-314
ESD protection kit, 310
files, 310
flashlights, 310
hex-head drivers, 309
needle-nose pliers, 309
screwdrivers, 309
soldering iron, 310
tweezers, 309
wire cutters, 310
wire strippers, 310
toothpicks, 310
transfer rates
PIO modes, 107-108
UDMA, 108
translation, 97
translation methods (ATA-2), 97
translation settings, LBA, 99-100
Transmission Control Protocol/Internet Protocol. See TCP/IP network protocols
transmission rates (modems), 176-177
transmit data (TD) pin, 290
Travan, 9
Travan tape backup drives, 155-157
tree controls (Windows Explorer), 218
Trident video card chipsets, 254
troubleshooting
BIOS, 77-78
bootable CDs, 140-141
CD-ROM drives, 138-139
DCC, 295-296
display problems, 259-260
DVD drives, 139
floppy drives, 144
hard drive capacity detection, 102-103
hard drives, 135-136
I/O ports, 173-174
IDE installation, 112-113
IDE/ATAPI CD-ROM drives, 139-140
IEEE-1394 devices, 212-213
IEEE-1394 host adapters, 212-213
interface cards, 258
keyboards, 227-228
memory, 45
modems, 179-182
monitors, 259-260
mouse, 233-235
networks, 287-289
parallel ports, 193
parallel-port attachments, 257
power supplies, 37-38
printers
application problems, 201
driver problems, 201
hardware problems, 196-199
printer connection problems, 199-201
processors, 27-29
removable storage drives, 154
resource conflicts (add-on cards), 57-58
scanners, 203
SCSI configurations, 120-122
serial ports, 173
sound cards, 267
tape drives, 161, 164
backup/restore failures, 162
bad block/tape media errors, 162
drive detection, 161-162
system freezes/lockups, 163
TCP/IP network protocols, 289-290
USB devices, 258
USB ports, 207-208
video capture devices, 257-258
Tseng video card chipsets, 254
turning on/off LBA translation settings, 99-100
tweezers, 309
twisted-pair cabling, 278
Type A connectors, 189
Type B connectors, 189
Type C connectors, 189
typematic repeat rate, adjusting, 221

U
UART (Universal Asynchronous Receiver/Transmitter) chip, 9, 169-172
UDMA (Ultra DMA), 9, 108
UDMA modes, 108
UDMA/66, 109
UDMA/100, 109
Ultra-X Web site, 88
unformatting hard drives, 133
Unicore Software Web site, 72
Universal Asynchronous Receiver/Transmitter (UART) chip, 9, 169-171
Universal Serial Bus. See USB
unshielded twisted pair (UTP) cable, 9, 273
upgrading BIOS, 71, 106
advantages, 69
alternatives, 70-71
chip swap, 71
determining motherboard manufacturer, 79-82
finding upgrades, 71-72
flash upgrades, 71
precautions, 72-73
recovering from failed procedure, 73-74
modems to V.90, 178
operating systems, 302
UART chip, 171-172
video cards, 250
USB (Universal Serial Bus), 9, 211-212
USB 1.1, 209-210
USB 2.0, 209-210
USB cable connectors, 206
USB cables, 319
USB connectors, 205
USB controllers, 208
USB data rates, 209
USB devices, 205, 258
USB header cables, 206
USB host adapter cards, 206
USB hubs, 209
USB keyboard connectors, 226
USB keyboards, 227
USB Legacy support, 227
USB news and troubleshooting Web sites, 209
USB peripherals, 207
USB ports, 205, 319
adding, 206-207
identifying, 205
locating, 206
system requirements, 207
troubleshooting, 207-208
USB Ready utility, downloading, 207
USB Web site, 207
USB-port attachment, 257
utilities
diagnostic, 307
partitioning (FDISK). See FDISK
testing, 307
USB Ready, downloading, 207
UTP (unshielded twisted pair) cables, 9, 273
Utilities
diagnostic, 307
partitioning (FDISK). See FDISK
testing, 307
USB Ready, downloading, 207
V
/V parameter, 132
V.90 modems, 9
troubleshooting, 179
upgrading modems to, 178
v.92 modems, 9
vacuum cleaners, ESD-safe, 315
Verbatim QIC cross reference Web site, 158
versions
 BIOS, determining, 79
 PCL, 195
vertical refresh rates, 252
vertical scan frequency. See refresh rates
VESA (Video Electronic Standards Association), 9
VESA Local-Bus (VL-Bus), 10, 249
VESA Local-Bus (VL-Bus) expansion slots, 62
VGA (video graphics adapter), 9
VGA DB-15 connector pinout, 241-242
VGA video display modes, 244-246
video adapters (memory), 246
video cables, 322
video capture devices, troubleshooting, 257-258
video card chipsets, 254
video cards
 AGP, 250-251
 comparing, 253
 memory, 249
 memory requirements (resolutions/color depths), 247-248
 refresh rates, adjusting, 252-253
 upgrading, 250
video display modes, VGA, 244, 246

Video Electronic Standards Association (VESA), 9
video graphics adapter (VGA), 9
video modes (chips and technologies), 244-246
video ports, 321
Video RAM (VRAM), 247
viewable area of monitors, 237
VL-Bus (VESA Local-Bus), 10, 249
VL-Bus expansion slots, 62
VRAM (Video RAM), 247

W

Web sites
 AMI, 81, 307
 Award Software, 81
 CheckIt, 307
digitalroom.net, 255
 IEEE-1394, 213
 Iomega, 154
 Linux IEEE-1394 support, 213
 Linux USB device support and status, 209
 Micro Firmware, 72
 MicroSystems Development, Inc., 145
 Paralan, 115
 Parallel Technologies, 296
 Realtime Soft, 255
 SuperDisk, 145
 Sybergen SyGate, 188
 Ultra-X, Inc., 88
 Unicore Software, 72
Web sites

USB, 207
USB news and troubleshooting, 209
Verbatim QIC cross reference, 158
Weymouth Technologies, 153
Wim, 81
Win95E, 188
WinDrivers, 153
WinGate, 188
WinProxy, 188
Zoom Telephonics, 178
Weymouth Technologies Web site, 153
Wheel Mouse, 230
Wim Web site, 81
Win CheckIt 6.5, 307
Win95rk.hlp, 306
Win98Se Web site, 188
Window RAM (WRAM), 247
Windows
delay parameter, 221
detecting
DMA, 304
I/O port addresses, 304
IRQ usage, 303
memory, 304
drive migration, 134
installing, 300
Windows 2000
detecting
DMA, 304
I/O port addresses, 304
IRQ usage, 303
memory, 304
direct parallel connections, 294
direct serial connections, 294
Hardware Compatibility List, 255
installing, 301-302
Windows 2000 host computers, configuring ICS, 187-188
Windows dialog box, 217-218
Windows Explorer keyboard commands
selected objects, 218-219
tree controls, 218
Windows Internet Naming Service (WINS), 10
Windows keys, 10
Windows Me
detecting
DMA, 304
I/O port addresses, 304
IRQ usage, 303
memory, 304
drive migration, 134
installing, 300-301
Windows NT
 detecting
 DMA, 304
 I/O port addresses,
 304
 IRQs, 304
 memory, 304
 installing, 301-302

Windows NT
 Diagnostics command (Administrative Tools menu), 304
 Windows Setup command (Add/Remove Programs menu), 185
 WinDrivers Web site, 153
 WinGate Web site, 188
 Winmodems, 169
 WINMSD.EXE, 305
 WinProxy Web site, 188
 WINS (Windows Internet Naming Service), 10
 wire cutters, 310
 wire pairing (twisted-pair cabling), 278
 wire strippers, 310
 wireless mouse, 231
 wireless networks, 282
 NIC cards, 284
 point-to-point, 283
 security/encrypting, 284
 star-topology, 282
 wizards
 Dial-Up Networking, 293
 Home Networking, 185
 Network Connection, 294
 WRAM (Window RAM), 247
 wrap plugs, 174
 write-protect setting, 73

X-Z
 x2 modems, upgrading to V.90 modems, 178
 x86, 10
 XCOPY command, 133
 XCOPY32 command, 134-135
 Y-cable power splitters, 311
 Zip drives (Iomega), 153-154
 Zoom Telephonics Web site, 178